Metamath Proof Explorer


Theorem h1da

Description: A 1-dimensional subspace is an atom. (Contributed by NM, 22-Jul-2001) (New usage is discouraged.)

Ref Expression
Assertion h1da AA0AHAtoms

Proof

Step Hyp Ref Expression
1 snssi AA
2 occl AAC
3 choccl ACAC
4 1 2 3 3syl AAC
5 4 adantr AA0AC
6 h1dn0 AA0A0
7 h1datom xCAxAx=Ax=0
8 7 expcom AxCxAx=Ax=0
9 8 ralrimiv AxCxAx=Ax=0
10 9 adantr AA0xCxAx=Ax=0
11 6 10 jca AA0A0xCxAx=Ax=0
12 elat2 AHAtomsACA0xCxAx=Ax=0
13 5 11 12 sylanbrc AA0AHAtoms