| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snssi | ⊢ ( 𝐴  ∈   ℋ  →  { 𝐴 }  ⊆   ℋ ) | 
						
							| 2 |  | occl | ⊢ ( { 𝐴 }  ⊆   ℋ  →  ( ⊥ ‘ { 𝐴 } )  ∈   Cℋ  ) | 
						
							| 3 |  | choccl | ⊢ ( ( ⊥ ‘ { 𝐴 } )  ∈   Cℋ   →  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∈   Cℋ  ) | 
						
							| 4 | 1 2 3 | 3syl | ⊢ ( 𝐴  ∈   ℋ  →  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∈   Cℋ  ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∈   Cℋ  ) | 
						
							| 6 |  | h1dn0 | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ≠  0ℋ ) | 
						
							| 7 |  | h1datom | ⊢ ( ( 𝑥  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ( 𝑥  ⊆  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  →  ( 𝑥  =  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∨  𝑥  =  0ℋ ) ) ) | 
						
							| 8 | 7 | expcom | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝑥  ∈   Cℋ   →  ( 𝑥  ⊆  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  →  ( 𝑥  =  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∨  𝑥  =  0ℋ ) ) ) ) | 
						
							| 9 | 8 | ralrimiv | ⊢ ( 𝐴  ∈   ℋ  →  ∀ 𝑥  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  →  ( 𝑥  =  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∨  𝑥  =  0ℋ ) ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ∀ 𝑥  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  →  ( 𝑥  =  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∨  𝑥  =  0ℋ ) ) ) | 
						
							| 11 | 6 10 | jca | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ≠  0ℋ  ∧  ∀ 𝑥  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  →  ( 𝑥  =  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∨  𝑥  =  0ℋ ) ) ) ) | 
						
							| 12 |  | elat2 | ⊢ ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∈  HAtoms  ↔  ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∈   Cℋ   ∧  ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ≠  0ℋ  ∧  ∀ 𝑥  ∈   Cℋ  ( 𝑥  ⊆  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  →  ( 𝑥  =  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∨  𝑥  =  0ℋ ) ) ) ) ) | 
						
							| 13 | 5 11 12 | sylanbrc | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ∈  HAtoms ) |