| Step |
Hyp |
Ref |
Expression |
| 1 |
|
snssi |
⊢ ( 𝐴 ∈ ℋ → { 𝐴 } ⊆ ℋ ) |
| 2 |
|
occl |
⊢ ( { 𝐴 } ⊆ ℋ → ( ⊥ ‘ { 𝐴 } ) ∈ Cℋ ) |
| 3 |
|
choccl |
⊢ ( ( ⊥ ‘ { 𝐴 } ) ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∈ Cℋ ) |
| 4 |
1 2 3
|
3syl |
⊢ ( 𝐴 ∈ ℋ → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∈ Cℋ ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∈ Cℋ ) |
| 6 |
|
h1dn0 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ≠ 0ℋ ) |
| 7 |
|
h1datom |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑥 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) → ( 𝑥 = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∨ 𝑥 = 0ℋ ) ) ) |
| 8 |
7
|
expcom |
⊢ ( 𝐴 ∈ ℋ → ( 𝑥 ∈ Cℋ → ( 𝑥 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) → ( 𝑥 = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∨ 𝑥 = 0ℋ ) ) ) ) |
| 9 |
8
|
ralrimiv |
⊢ ( 𝐴 ∈ ℋ → ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) → ( 𝑥 = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∨ 𝑥 = 0ℋ ) ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) → ( 𝑥 = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∨ 𝑥 = 0ℋ ) ) ) |
| 11 |
6 10
|
jca |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ≠ 0ℋ ∧ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) → ( 𝑥 = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∨ 𝑥 = 0ℋ ) ) ) ) |
| 12 |
|
elat2 |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∈ HAtoms ↔ ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∈ Cℋ ∧ ( ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ≠ 0ℋ ∧ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) → ( 𝑥 = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∨ 𝑥 = 0ℋ ) ) ) ) ) |
| 13 |
5 11 12
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∈ HAtoms ) |