Metamath Proof Explorer


Theorem chcv1

Description: The Hilbert lattice has the covering property. Proposition 1(ii) of Kalmbach p. 140 (and its converse). (Contributed by NM, 11-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chcv1 ACBHAtoms¬BAAAB

Proof

Step Hyp Ref Expression
1 atom1d BHAtomsxx0B=spanx
2 spansncv2 ACx¬spanxAAAspanx
3 sseq1 B=spanxBAspanxA
4 3 notbid B=spanx¬BA¬spanxA
5 oveq2 B=spanxAB=Aspanx
6 5 breq2d B=spanxAABAAspanx
7 4 6 imbi12d B=spanx¬BAAAB¬spanxAAAspanx
8 2 7 syl5ibrcom ACxB=spanx¬BAAAB
9 8 adantld ACxx0B=spanx¬BAAAB
10 9 rexlimdva ACxx0B=spanx¬BAAAB
11 10 imp ACxx0B=spanx¬BAAAB
12 1 11 sylan2b ACBHAtoms¬BAAAB
13 atelch BHAtomsBC
14 chjcl ACBCABC
15 cvpss ACABCAABAAB
16 14 15 syldan ACBCAABAAB
17 chnle ACBC¬BAAAB
18 16 17 sylibrd ACBCAAB¬BA
19 13 18 sylan2 ACBHAtomsAAB¬BA
20 12 19 impbid ACBHAtoms¬BAAAB