Step |
Hyp |
Ref |
Expression |
1 |
|
spansncv |
|- ( ( A e. CH /\ x e. CH /\ B e. ~H ) -> ( ( A C. x /\ x C_ ( A vH ( span ` { B } ) ) ) -> x = ( A vH ( span ` { B } ) ) ) ) |
2 |
1
|
3exp |
|- ( A e. CH -> ( x e. CH -> ( B e. ~H -> ( ( A C. x /\ x C_ ( A vH ( span ` { B } ) ) ) -> x = ( A vH ( span ` { B } ) ) ) ) ) ) |
3 |
2
|
com23 |
|- ( A e. CH -> ( B e. ~H -> ( x e. CH -> ( ( A C. x /\ x C_ ( A vH ( span ` { B } ) ) ) -> x = ( A vH ( span ` { B } ) ) ) ) ) ) |
4 |
3
|
imp |
|- ( ( A e. CH /\ B e. ~H ) -> ( x e. CH -> ( ( A C. x /\ x C_ ( A vH ( span ` { B } ) ) ) -> x = ( A vH ( span ` { B } ) ) ) ) ) |
5 |
4
|
ralrimiv |
|- ( ( A e. CH /\ B e. ~H ) -> A. x e. CH ( ( A C. x /\ x C_ ( A vH ( span ` { B } ) ) ) -> x = ( A vH ( span ` { B } ) ) ) ) |
6 |
5
|
anim2i |
|- ( ( A C. ( A vH ( span ` { B } ) ) /\ ( A e. CH /\ B e. ~H ) ) -> ( A C. ( A vH ( span ` { B } ) ) /\ A. x e. CH ( ( A C. x /\ x C_ ( A vH ( span ` { B } ) ) ) -> x = ( A vH ( span ` { B } ) ) ) ) ) |
7 |
6
|
expcom |
|- ( ( A e. CH /\ B e. ~H ) -> ( A C. ( A vH ( span ` { B } ) ) -> ( A C. ( A vH ( span ` { B } ) ) /\ A. x e. CH ( ( A C. x /\ x C_ ( A vH ( span ` { B } ) ) ) -> x = ( A vH ( span ` { B } ) ) ) ) ) ) |
8 |
|
spansnch |
|- ( B e. ~H -> ( span ` { B } ) e. CH ) |
9 |
|
chnle |
|- ( ( A e. CH /\ ( span ` { B } ) e. CH ) -> ( -. ( span ` { B } ) C_ A <-> A C. ( A vH ( span ` { B } ) ) ) ) |
10 |
8 9
|
sylan2 |
|- ( ( A e. CH /\ B e. ~H ) -> ( -. ( span ` { B } ) C_ A <-> A C. ( A vH ( span ` { B } ) ) ) ) |
11 |
|
chjcl |
|- ( ( A e. CH /\ ( span ` { B } ) e. CH ) -> ( A vH ( span ` { B } ) ) e. CH ) |
12 |
8 11
|
sylan2 |
|- ( ( A e. CH /\ B e. ~H ) -> ( A vH ( span ` { B } ) ) e. CH ) |
13 |
|
cvbr2 |
|- ( ( A e. CH /\ ( A vH ( span ` { B } ) ) e. CH ) -> ( A ( A C. ( A vH ( span ` { B } ) ) /\ A. x e. CH ( ( A C. x /\ x C_ ( A vH ( span ` { B } ) ) ) -> x = ( A vH ( span ` { B } ) ) ) ) ) ) |
14 |
12 13
|
syldan |
|- ( ( A e. CH /\ B e. ~H ) -> ( A ( A C. ( A vH ( span ` { B } ) ) /\ A. x e. CH ( ( A C. x /\ x C_ ( A vH ( span ` { B } ) ) ) -> x = ( A vH ( span ` { B } ) ) ) ) ) ) |
15 |
7 10 14
|
3imtr4d |
|- ( ( A e. CH /\ B e. ~H ) -> ( -. ( span ` { B } ) C_ A -> A |