Metamath Proof Explorer


Theorem spansncv2

Description: Hilbert space has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of Kalmbach p. 153. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spansncv2 ( ( 𝐴C𝐵 ∈ ℋ ) → ( ¬ ( span ‘ { 𝐵 } ) ⊆ 𝐴𝐴 ( 𝐴 ( span ‘ { 𝐵 } ) ) ) )

Proof

Step Hyp Ref Expression
1 spansncv ( ( 𝐴C𝑥C𝐵 ∈ ℋ ) → ( ( 𝐴𝑥𝑥 ⊆ ( 𝐴 ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ( span ‘ { 𝐵 } ) ) ) )
2 1 3exp ( 𝐴C → ( 𝑥C → ( 𝐵 ∈ ℋ → ( ( 𝐴𝑥𝑥 ⊆ ( 𝐴 ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ( span ‘ { 𝐵 } ) ) ) ) ) )
3 2 com23 ( 𝐴C → ( 𝐵 ∈ ℋ → ( 𝑥C → ( ( 𝐴𝑥𝑥 ⊆ ( 𝐴 ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ( span ‘ { 𝐵 } ) ) ) ) ) )
4 3 imp ( ( 𝐴C𝐵 ∈ ℋ ) → ( 𝑥C → ( ( 𝐴𝑥𝑥 ⊆ ( 𝐴 ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ( span ‘ { 𝐵 } ) ) ) ) )
5 4 ralrimiv ( ( 𝐴C𝐵 ∈ ℋ ) → ∀ 𝑥C ( ( 𝐴𝑥𝑥 ⊆ ( 𝐴 ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ( span ‘ { 𝐵 } ) ) ) )
6 5 anim2i ( ( 𝐴 ⊊ ( 𝐴 ( span ‘ { 𝐵 } ) ) ∧ ( 𝐴C𝐵 ∈ ℋ ) ) → ( 𝐴 ⊊ ( 𝐴 ( span ‘ { 𝐵 } ) ) ∧ ∀ 𝑥C ( ( 𝐴𝑥𝑥 ⊆ ( 𝐴 ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ( span ‘ { 𝐵 } ) ) ) ) )
7 6 expcom ( ( 𝐴C𝐵 ∈ ℋ ) → ( 𝐴 ⊊ ( 𝐴 ( span ‘ { 𝐵 } ) ) → ( 𝐴 ⊊ ( 𝐴 ( span ‘ { 𝐵 } ) ) ∧ ∀ 𝑥C ( ( 𝐴𝑥𝑥 ⊆ ( 𝐴 ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ( span ‘ { 𝐵 } ) ) ) ) ) )
8 spansnch ( 𝐵 ∈ ℋ → ( span ‘ { 𝐵 } ) ∈ C )
9 chnle ( ( 𝐴C ∧ ( span ‘ { 𝐵 } ) ∈ C ) → ( ¬ ( span ‘ { 𝐵 } ) ⊆ 𝐴𝐴 ⊊ ( 𝐴 ( span ‘ { 𝐵 } ) ) ) )
10 8 9 sylan2 ( ( 𝐴C𝐵 ∈ ℋ ) → ( ¬ ( span ‘ { 𝐵 } ) ⊆ 𝐴𝐴 ⊊ ( 𝐴 ( span ‘ { 𝐵 } ) ) ) )
11 chjcl ( ( 𝐴C ∧ ( span ‘ { 𝐵 } ) ∈ C ) → ( 𝐴 ( span ‘ { 𝐵 } ) ) ∈ C )
12 8 11 sylan2 ( ( 𝐴C𝐵 ∈ ℋ ) → ( 𝐴 ( span ‘ { 𝐵 } ) ) ∈ C )
13 cvbr2 ( ( 𝐴C ∧ ( 𝐴 ( span ‘ { 𝐵 } ) ) ∈ C ) → ( 𝐴 ( 𝐴 ( span ‘ { 𝐵 } ) ) ↔ ( 𝐴 ⊊ ( 𝐴 ( span ‘ { 𝐵 } ) ) ∧ ∀ 𝑥C ( ( 𝐴𝑥𝑥 ⊆ ( 𝐴 ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ( span ‘ { 𝐵 } ) ) ) ) ) )
14 12 13 syldan ( ( 𝐴C𝐵 ∈ ℋ ) → ( 𝐴 ( 𝐴 ( span ‘ { 𝐵 } ) ) ↔ ( 𝐴 ⊊ ( 𝐴 ( span ‘ { 𝐵 } ) ) ∧ ∀ 𝑥C ( ( 𝐴𝑥𝑥 ⊆ ( 𝐴 ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ( span ‘ { 𝐵 } ) ) ) ) ) )
15 7 10 14 3imtr4d ( ( 𝐴C𝐵 ∈ ℋ ) → ( ¬ ( span ‘ { 𝐵 } ) ⊆ 𝐴𝐴 ( 𝐴 ( span ‘ { 𝐵 } ) ) ) )