Step |
Hyp |
Ref |
Expression |
1 |
|
spansncv |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) |
2 |
1
|
3exp |
⊢ ( 𝐴 ∈ Cℋ → ( 𝑥 ∈ Cℋ → ( 𝐵 ∈ ℋ → ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) ) ) |
3 |
2
|
com23 |
⊢ ( 𝐴 ∈ Cℋ → ( 𝐵 ∈ ℋ → ( 𝑥 ∈ Cℋ → ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) ) ) |
4 |
3
|
imp |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑥 ∈ Cℋ → ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) ) |
5 |
4
|
ralrimiv |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ∀ 𝑥 ∈ Cℋ ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) |
6 |
5
|
anim2i |
⊢ ( ( 𝐴 ⊊ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∧ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) ) → ( 𝐴 ⊊ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∧ ∀ 𝑥 ∈ Cℋ ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) ) |
7 |
6
|
expcom |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ⊊ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) → ( 𝐴 ⊊ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∧ ∀ 𝑥 ∈ Cℋ ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) ) ) |
8 |
|
spansnch |
⊢ ( 𝐵 ∈ ℋ → ( span ‘ { 𝐵 } ) ∈ Cℋ ) |
9 |
|
chnle |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( span ‘ { 𝐵 } ) ∈ Cℋ ) → ( ¬ ( span ‘ { 𝐵 } ) ⊆ 𝐴 ↔ 𝐴 ⊊ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) |
10 |
8 9
|
sylan2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( ¬ ( span ‘ { 𝐵 } ) ⊆ 𝐴 ↔ 𝐴 ⊊ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) |
11 |
|
chjcl |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( span ‘ { 𝐵 } ) ∈ Cℋ ) → ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∈ Cℋ ) |
12 |
8 11
|
sylan2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∈ Cℋ ) |
13 |
|
cvbr2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∈ Cℋ ) → ( 𝐴 ⋖ℋ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ↔ ( 𝐴 ⊊ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∧ ∀ 𝑥 ∈ Cℋ ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) ) ) |
14 |
12 13
|
syldan |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ⋖ℋ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ↔ ( 𝐴 ⊊ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∧ ∀ 𝑥 ∈ Cℋ ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) ) ) |
15 |
7 10 14
|
3imtr4d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( ¬ ( span ‘ { 𝐵 } ) ⊆ 𝐴 → 𝐴 ⋖ℋ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) |