Metamath Proof Explorer


Theorem chnle

Description: Equivalent expressions for "not less than" in the Hilbert lattice. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chnle ( ( 𝐴C𝐵C ) → ( ¬ 𝐵𝐴𝐴 ⊊ ( 𝐴 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 sseq2 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐵𝐴𝐵 ⊆ if ( 𝐴C , 𝐴 , 0 ) ) )
2 1 notbid ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ¬ 𝐵𝐴 ↔ ¬ 𝐵 ⊆ if ( 𝐴C , 𝐴 , 0 ) ) )
3 id ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → 𝐴 = if ( 𝐴C , 𝐴 , 0 ) )
4 oveq1 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐴 𝐵 ) = ( if ( 𝐴C , 𝐴 , 0 ) ∨ 𝐵 ) )
5 3 4 psseq12d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐴 ⊊ ( 𝐴 𝐵 ) ↔ if ( 𝐴C , 𝐴 , 0 ) ⊊ ( if ( 𝐴C , 𝐴 , 0 ) ∨ 𝐵 ) ) )
6 2 5 bibi12d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( ¬ 𝐵𝐴𝐴 ⊊ ( 𝐴 𝐵 ) ) ↔ ( ¬ 𝐵 ⊆ if ( 𝐴C , 𝐴 , 0 ) ↔ if ( 𝐴C , 𝐴 , 0 ) ⊊ ( if ( 𝐴C , 𝐴 , 0 ) ∨ 𝐵 ) ) ) )
7 sseq1 ( 𝐵 = if ( 𝐵C , 𝐵 , 0 ) → ( 𝐵 ⊆ if ( 𝐴C , 𝐴 , 0 ) ↔ if ( 𝐵C , 𝐵 , 0 ) ⊆ if ( 𝐴C , 𝐴 , 0 ) ) )
8 7 notbid ( 𝐵 = if ( 𝐵C , 𝐵 , 0 ) → ( ¬ 𝐵 ⊆ if ( 𝐴C , 𝐴 , 0 ) ↔ ¬ if ( 𝐵C , 𝐵 , 0 ) ⊆ if ( 𝐴C , 𝐴 , 0 ) ) )
9 oveq2 ( 𝐵 = if ( 𝐵C , 𝐵 , 0 ) → ( if ( 𝐴C , 𝐴 , 0 ) ∨ 𝐵 ) = ( if ( 𝐴C , 𝐴 , 0 ) ∨ if ( 𝐵C , 𝐵 , 0 ) ) )
10 9 psseq2d ( 𝐵 = if ( 𝐵C , 𝐵 , 0 ) → ( if ( 𝐴C , 𝐴 , 0 ) ⊊ ( if ( 𝐴C , 𝐴 , 0 ) ∨ 𝐵 ) ↔ if ( 𝐴C , 𝐴 , 0 ) ⊊ ( if ( 𝐴C , 𝐴 , 0 ) ∨ if ( 𝐵C , 𝐵 , 0 ) ) ) )
11 8 10 bibi12d ( 𝐵 = if ( 𝐵C , 𝐵 , 0 ) → ( ( ¬ 𝐵 ⊆ if ( 𝐴C , 𝐴 , 0 ) ↔ if ( 𝐴C , 𝐴 , 0 ) ⊊ ( if ( 𝐴C , 𝐴 , 0 ) ∨ 𝐵 ) ) ↔ ( ¬ if ( 𝐵C , 𝐵 , 0 ) ⊆ if ( 𝐴C , 𝐴 , 0 ) ↔ if ( 𝐴C , 𝐴 , 0 ) ⊊ ( if ( 𝐴C , 𝐴 , 0 ) ∨ if ( 𝐵C , 𝐵 , 0 ) ) ) ) )
12 h0elch 0C
13 12 elimel if ( 𝐴C , 𝐴 , 0 ) ∈ C
14 12 elimel if ( 𝐵C , 𝐵 , 0 ) ∈ C
15 13 14 chnlei ( ¬ if ( 𝐵C , 𝐵 , 0 ) ⊆ if ( 𝐴C , 𝐴 , 0 ) ↔ if ( 𝐴C , 𝐴 , 0 ) ⊊ ( if ( 𝐴C , 𝐴 , 0 ) ∨ if ( 𝐵C , 𝐵 , 0 ) ) )
16 6 11 15 dedth2h ( ( 𝐴C𝐵C ) → ( ¬ 𝐵𝐴𝐴 ⊊ ( 𝐴 𝐵 ) ) )