Metamath Proof Explorer


Theorem psssstr

Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996)

Ref Expression
Assertion psssstr
|- ( ( A C. B /\ B C_ C ) -> A C. C )

Proof

Step Hyp Ref Expression
1 sspss
 |-  ( B C_ C <-> ( B C. C \/ B = C ) )
2 psstr
 |-  ( ( A C. B /\ B C. C ) -> A C. C )
3 2 ex
 |-  ( A C. B -> ( B C. C -> A C. C ) )
4 psseq2
 |-  ( B = C -> ( A C. B <-> A C. C ) )
5 4 biimpcd
 |-  ( A C. B -> ( B = C -> A C. C ) )
6 3 5 jaod
 |-  ( A C. B -> ( ( B C. C \/ B = C ) -> A C. C ) )
7 6 imp
 |-  ( ( A C. B /\ ( B C. C \/ B = C ) ) -> A C. C )
8 1 7 sylan2b
 |-  ( ( A C. B /\ B C_ C ) -> A C. C )