| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvnbtwn |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A -. ( A C. C /\ C C. B ) ) ) |
| 2 |
|
iman |
|- ( ( ( A C. C /\ C C_ B ) -> C = B ) <-> -. ( ( A C. C /\ C C_ B ) /\ -. C = B ) ) |
| 3 |
|
anass |
|- ( ( ( A C. C /\ C C_ B ) /\ -. C = B ) <-> ( A C. C /\ ( C C_ B /\ -. C = B ) ) ) |
| 4 |
|
dfpss2 |
|- ( C C. B <-> ( C C_ B /\ -. C = B ) ) |
| 5 |
4
|
anbi2i |
|- ( ( A C. C /\ C C. B ) <-> ( A C. C /\ ( C C_ B /\ -. C = B ) ) ) |
| 6 |
3 5
|
bitr4i |
|- ( ( ( A C. C /\ C C_ B ) /\ -. C = B ) <-> ( A C. C /\ C C. B ) ) |
| 7 |
6
|
notbii |
|- ( -. ( ( A C. C /\ C C_ B ) /\ -. C = B ) <-> -. ( A C. C /\ C C. B ) ) |
| 8 |
2 7
|
bitr2i |
|- ( -. ( A C. C /\ C C. B ) <-> ( ( A C. C /\ C C_ B ) -> C = B ) ) |
| 9 |
1 8
|
imbitrdi |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A ( ( A C. C /\ C C_ B ) -> C = B ) ) ) |