Step |
Hyp |
Ref |
Expression |
1 |
|
df-ss |
|- ( A C_ B <-> ( A i^i B ) = A ) |
2 |
1
|
biimpi |
|- ( A C_ B -> ( A i^i B ) = A ) |
3 |
2
|
eleq1d |
|- ( A C_ B -> ( ( A i^i B ) e. HAtoms <-> A e. HAtoms ) ) |
4 |
3
|
biimprcd |
|- ( A e. HAtoms -> ( A C_ B -> ( A i^i B ) e. HAtoms ) ) |
5 |
4
|
adantr |
|- ( ( A e. HAtoms /\ B e. CH ) -> ( A C_ B -> ( A i^i B ) e. HAtoms ) ) |
6 |
|
incom |
|- ( A i^i B ) = ( B i^i A ) |
7 |
6
|
eleq1i |
|- ( ( A i^i B ) e. HAtoms <-> ( B i^i A ) e. HAtoms ) |
8 |
|
atne0 |
|- ( ( B i^i A ) e. HAtoms -> ( B i^i A ) =/= 0H ) |
9 |
8
|
neneqd |
|- ( ( B i^i A ) e. HAtoms -> -. ( B i^i A ) = 0H ) |
10 |
7 9
|
sylbi |
|- ( ( A i^i B ) e. HAtoms -> -. ( B i^i A ) = 0H ) |
11 |
|
atnssm0 |
|- ( ( B e. CH /\ A e. HAtoms ) -> ( -. A C_ B <-> ( B i^i A ) = 0H ) ) |
12 |
11
|
ancoms |
|- ( ( A e. HAtoms /\ B e. CH ) -> ( -. A C_ B <-> ( B i^i A ) = 0H ) ) |
13 |
12
|
biimpd |
|- ( ( A e. HAtoms /\ B e. CH ) -> ( -. A C_ B -> ( B i^i A ) = 0H ) ) |
14 |
13
|
con1d |
|- ( ( A e. HAtoms /\ B e. CH ) -> ( -. ( B i^i A ) = 0H -> A C_ B ) ) |
15 |
10 14
|
syl5 |
|- ( ( A e. HAtoms /\ B e. CH ) -> ( ( A i^i B ) e. HAtoms -> A C_ B ) ) |
16 |
5 15
|
impbid |
|- ( ( A e. HAtoms /\ B e. CH ) -> ( A C_ B <-> ( A i^i B ) e. HAtoms ) ) |