Metamath Proof Explorer


Theorem atssma

Description: The meet with an atom's superset is the atom. (Contributed by NM, 12-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion atssma
|- ( ( A e. HAtoms /\ B e. CH ) -> ( A C_ B <-> ( A i^i B ) e. HAtoms ) )

Proof

Step Hyp Ref Expression
1 df-ss
 |-  ( A C_ B <-> ( A i^i B ) = A )
2 1 biimpi
 |-  ( A C_ B -> ( A i^i B ) = A )
3 2 eleq1d
 |-  ( A C_ B -> ( ( A i^i B ) e. HAtoms <-> A e. HAtoms ) )
4 3 biimprcd
 |-  ( A e. HAtoms -> ( A C_ B -> ( A i^i B ) e. HAtoms ) )
5 4 adantr
 |-  ( ( A e. HAtoms /\ B e. CH ) -> ( A C_ B -> ( A i^i B ) e. HAtoms ) )
6 incom
 |-  ( A i^i B ) = ( B i^i A )
7 6 eleq1i
 |-  ( ( A i^i B ) e. HAtoms <-> ( B i^i A ) e. HAtoms )
8 atne0
 |-  ( ( B i^i A ) e. HAtoms -> ( B i^i A ) =/= 0H )
9 8 neneqd
 |-  ( ( B i^i A ) e. HAtoms -> -. ( B i^i A ) = 0H )
10 7 9 sylbi
 |-  ( ( A i^i B ) e. HAtoms -> -. ( B i^i A ) = 0H )
11 atnssm0
 |-  ( ( B e. CH /\ A e. HAtoms ) -> ( -. A C_ B <-> ( B i^i A ) = 0H ) )
12 11 ancoms
 |-  ( ( A e. HAtoms /\ B e. CH ) -> ( -. A C_ B <-> ( B i^i A ) = 0H ) )
13 12 biimpd
 |-  ( ( A e. HAtoms /\ B e. CH ) -> ( -. A C_ B -> ( B i^i A ) = 0H ) )
14 13 con1d
 |-  ( ( A e. HAtoms /\ B e. CH ) -> ( -. ( B i^i A ) = 0H -> A C_ B ) )
15 10 14 syl5
 |-  ( ( A e. HAtoms /\ B e. CH ) -> ( ( A i^i B ) e. HAtoms -> A C_ B ) )
16 5 15 impbid
 |-  ( ( A e. HAtoms /\ B e. CH ) -> ( A C_ B <-> ( A i^i B ) e. HAtoms ) )