Metamath Proof Explorer


Theorem atne0

Description: An atom is not the Hilbert lattice zero. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)

Ref Expression
Assertion atne0
|- ( A e. HAtoms -> A =/= 0H )

Proof

Step Hyp Ref Expression
1 elat2
 |-  ( A e. HAtoms <-> ( A e. CH /\ ( A =/= 0H /\ A. x e. CH ( x C_ A -> ( x = A \/ x = 0H ) ) ) ) )
2 simprl
 |-  ( ( A e. CH /\ ( A =/= 0H /\ A. x e. CH ( x C_ A -> ( x = A \/ x = 0H ) ) ) ) -> A =/= 0H )
3 1 2 sylbi
 |-  ( A e. HAtoms -> A =/= 0H )