Metamath Proof Explorer


Theorem atne0

Description: An atom is not the Hilbert lattice zero. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)

Ref Expression
Assertion atne0 ( 𝐴 ∈ HAtoms → 𝐴 ≠ 0 )

Proof

Step Hyp Ref Expression
1 elat2 ( 𝐴 ∈ HAtoms ↔ ( 𝐴C ∧ ( 𝐴 ≠ 0 ∧ ∀ 𝑥C ( 𝑥𝐴 → ( 𝑥 = 𝐴𝑥 = 0 ) ) ) ) )
2 simprl ( ( 𝐴C ∧ ( 𝐴 ≠ 0 ∧ ∀ 𝑥C ( 𝑥𝐴 → ( 𝑥 = 𝐴𝑥 = 0 ) ) ) ) → 𝐴 ≠ 0 )
3 1 2 sylbi ( 𝐴 ∈ HAtoms → 𝐴 ≠ 0 )