| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elat2 | ⊢ ( 𝐵  ∈  HAtoms  ↔  ( 𝐵  ∈   Cℋ   ∧  ( 𝐵  ≠  0ℋ  ∧  ∀ 𝑥  ∈   Cℋ  ( 𝑥  ⊆  𝐵  →  ( 𝑥  =  𝐵  ∨  𝑥  =  0ℋ ) ) ) ) ) | 
						
							| 2 |  | sseq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ⊆  𝐵  ↔  𝐴  ⊆  𝐵 ) ) | 
						
							| 3 |  | eqeq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  =  𝐵  ↔  𝐴  =  𝐵 ) ) | 
						
							| 4 |  | eqeq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  =  0ℋ  ↔  𝐴  =  0ℋ ) ) | 
						
							| 5 | 3 4 | orbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  =  𝐵  ∨  𝑥  =  0ℋ )  ↔  ( 𝐴  =  𝐵  ∨  𝐴  =  0ℋ ) ) ) | 
						
							| 6 | 2 5 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ⊆  𝐵  →  ( 𝑥  =  𝐵  ∨  𝑥  =  0ℋ ) )  ↔  ( 𝐴  ⊆  𝐵  →  ( 𝐴  =  𝐵  ∨  𝐴  =  0ℋ ) ) ) ) | 
						
							| 7 | 6 | rspcv | ⊢ ( 𝐴  ∈   Cℋ   →  ( ∀ 𝑥  ∈   Cℋ  ( 𝑥  ⊆  𝐵  →  ( 𝑥  =  𝐵  ∨  𝑥  =  0ℋ ) )  →  ( 𝐴  ⊆  𝐵  →  ( 𝐴  =  𝐵  ∨  𝐴  =  0ℋ ) ) ) ) | 
						
							| 8 | 7 | adantld | ⊢ ( 𝐴  ∈   Cℋ   →  ( ( 𝐵  ≠  0ℋ  ∧  ∀ 𝑥  ∈   Cℋ  ( 𝑥  ⊆  𝐵  →  ( 𝑥  =  𝐵  ∨  𝑥  =  0ℋ ) ) )  →  ( 𝐴  ⊆  𝐵  →  ( 𝐴  =  𝐵  ∨  𝐴  =  0ℋ ) ) ) ) | 
						
							| 9 | 8 | adantld | ⊢ ( 𝐴  ∈   Cℋ   →  ( ( 𝐵  ∈   Cℋ   ∧  ( 𝐵  ≠  0ℋ  ∧  ∀ 𝑥  ∈   Cℋ  ( 𝑥  ⊆  𝐵  →  ( 𝑥  =  𝐵  ∨  𝑥  =  0ℋ ) ) ) )  →  ( 𝐴  ⊆  𝐵  →  ( 𝐴  =  𝐵  ∨  𝐴  =  0ℋ ) ) ) ) | 
						
							| 10 | 9 | imp | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  ( 𝐵  ∈   Cℋ   ∧  ( 𝐵  ≠  0ℋ  ∧  ∀ 𝑥  ∈   Cℋ  ( 𝑥  ⊆  𝐵  →  ( 𝑥  =  𝐵  ∨  𝑥  =  0ℋ ) ) ) ) )  →  ( 𝐴  ⊆  𝐵  →  ( 𝐴  =  𝐵  ∨  𝐴  =  0ℋ ) ) ) | 
						
							| 11 | 1 10 | sylan2b | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈  HAtoms )  →  ( 𝐴  ⊆  𝐵  →  ( 𝐴  =  𝐵  ∨  𝐴  =  0ℋ ) ) ) |