Metamath Proof Explorer


Theorem atss

Description: A lattice element smaller than an atom is either the atom or zero. (Contributed by NM, 25-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atss ACBHAtomsABA=BA=0

Proof

Step Hyp Ref Expression
1 elat2 BHAtomsBCB0xCxBx=Bx=0
2 sseq1 x=AxBAB
3 eqeq1 x=Ax=BA=B
4 eqeq1 x=Ax=0A=0
5 3 4 orbi12d x=Ax=Bx=0A=BA=0
6 2 5 imbi12d x=AxBx=Bx=0ABA=BA=0
7 6 rspcv ACxCxBx=Bx=0ABA=BA=0
8 7 adantld ACB0xCxBx=Bx=0ABA=BA=0
9 8 adantld ACBCB0xCxBx=Bx=0ABA=BA=0
10 9 imp ACBCB0xCxBx=Bx=0ABA=BA=0
11 1 10 sylan2b ACBHAtomsABA=BA=0