Step |
Hyp |
Ref |
Expression |
1 |
|
atnle.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
atnle.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
atnle.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
atnle.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
5 |
|
atnle.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) ≠ 0 ) → 𝐾 ∈ AtLat ) |
7 |
|
atllat |
⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ Lat ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
9 |
1 5
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
10 |
9
|
3ad2ant2 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → 𝑃 ∈ 𝐵 ) |
11 |
|
simp3 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
12 |
1 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑃 ∧ 𝑋 ) ∈ 𝐵 ) |
13 |
8 10 11 12
|
syl3anc |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑃 ∧ 𝑋 ) ∈ 𝐵 ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) ≠ 0 ) → ( 𝑃 ∧ 𝑋 ) ∈ 𝐵 ) |
15 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) ≠ 0 ) → ( 𝑃 ∧ 𝑋 ) ≠ 0 ) |
16 |
1 2 4 5
|
atlex |
⊢ ( ( 𝐾 ∈ AtLat ∧ ( 𝑃 ∧ 𝑋 ) ∈ 𝐵 ∧ ( 𝑃 ∧ 𝑋 ) ≠ 0 ) → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ ( 𝑃 ∧ 𝑋 ) ) |
17 |
6 14 15 16
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) ≠ 0 ) → ∃ 𝑦 ∈ 𝐴 𝑦 ≤ ( 𝑃 ∧ 𝑋 ) ) |
18 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → 𝐾 ∈ AtLat ) |
19 |
18 7
|
syl |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
20 |
1 5
|
atbase |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵 ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) |
22 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑃 ∈ 𝐴 ) |
23 |
22 9
|
syl |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑃 ∈ 𝐵 ) |
24 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
25 |
1 2 3
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑦 ≤ 𝑃 ∧ 𝑦 ≤ 𝑋 ) ↔ 𝑦 ≤ ( 𝑃 ∧ 𝑋 ) ) ) |
26 |
19 21 23 24 25
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑦 ≤ 𝑃 ∧ 𝑦 ≤ 𝑋 ) ↔ 𝑦 ≤ ( 𝑃 ∧ 𝑋 ) ) ) |
27 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
28 |
2 5
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑦 ≤ 𝑃 ↔ 𝑦 = 𝑃 ) ) |
29 |
18 27 22 28
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ≤ 𝑃 ↔ 𝑦 = 𝑃 ) ) |
30 |
|
breq1 |
⊢ ( 𝑦 = 𝑃 → ( 𝑦 ≤ 𝑋 ↔ 𝑃 ≤ 𝑋 ) ) |
31 |
30
|
biimpd |
⊢ ( 𝑦 = 𝑃 → ( 𝑦 ≤ 𝑋 → 𝑃 ≤ 𝑋 ) ) |
32 |
29 31
|
syl6bi |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ≤ 𝑃 → ( 𝑦 ≤ 𝑋 → 𝑃 ≤ 𝑋 ) ) ) |
33 |
32
|
impd |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑦 ≤ 𝑃 ∧ 𝑦 ≤ 𝑋 ) → 𝑃 ≤ 𝑋 ) ) |
34 |
26 33
|
sylbird |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ≤ ( 𝑃 ∧ 𝑋 ) → 𝑃 ≤ 𝑋 ) ) |
35 |
34
|
adantlr |
⊢ ( ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) ≠ 0 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ≤ ( 𝑃 ∧ 𝑋 ) → 𝑃 ≤ 𝑋 ) ) |
36 |
35
|
rexlimdva |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) ≠ 0 ) → ( ∃ 𝑦 ∈ 𝐴 𝑦 ≤ ( 𝑃 ∧ 𝑋 ) → 𝑃 ≤ 𝑋 ) ) |
37 |
17 36
|
mpd |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) ≠ 0 ) → 𝑃 ≤ 𝑋 ) |
38 |
37
|
ex |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑃 ∧ 𝑋 ) ≠ 0 → 𝑃 ≤ 𝑋 ) ) |
39 |
38
|
necon1bd |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ¬ 𝑃 ≤ 𝑋 → ( 𝑃 ∧ 𝑋 ) = 0 ) ) |
40 |
4 5
|
atn0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ≠ 0 ) |
41 |
40
|
3adant3 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → 𝑃 ≠ 0 ) |
42 |
1 2 3
|
latleeqm1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑃 ≤ 𝑋 ↔ ( 𝑃 ∧ 𝑋 ) = 𝑃 ) ) |
43 |
8 10 11 42
|
syl3anc |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑃 ≤ 𝑋 ↔ ( 𝑃 ∧ 𝑋 ) = 𝑃 ) ) |
44 |
43
|
adantr |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) = 0 ) → ( 𝑃 ≤ 𝑋 ↔ ( 𝑃 ∧ 𝑋 ) = 𝑃 ) ) |
45 |
|
eqeq1 |
⊢ ( ( 𝑃 ∧ 𝑋 ) = 𝑃 → ( ( 𝑃 ∧ 𝑋 ) = 0 ↔ 𝑃 = 0 ) ) |
46 |
45
|
biimpcd |
⊢ ( ( 𝑃 ∧ 𝑋 ) = 0 → ( ( 𝑃 ∧ 𝑋 ) = 𝑃 → 𝑃 = 0 ) ) |
47 |
46
|
adantl |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) = 0 ) → ( ( 𝑃 ∧ 𝑋 ) = 𝑃 → 𝑃 = 0 ) ) |
48 |
44 47
|
sylbid |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) = 0 ) → ( 𝑃 ≤ 𝑋 → 𝑃 = 0 ) ) |
49 |
48
|
necon3ad |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) = 0 ) → ( 𝑃 ≠ 0 → ¬ 𝑃 ≤ 𝑋 ) ) |
50 |
49
|
ex |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑃 ∧ 𝑋 ) = 0 → ( 𝑃 ≠ 0 → ¬ 𝑃 ≤ 𝑋 ) ) ) |
51 |
41 50
|
mpid |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑃 ∧ 𝑋 ) = 0 → ¬ 𝑃 ≤ 𝑋 ) ) |
52 |
39 51
|
impbid |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ¬ 𝑃 ≤ 𝑋 ↔ ( 𝑃 ∧ 𝑋 ) = 0 ) ) |