Metamath Proof Explorer


Theorem latleeqm1

Description: "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011)

Ref Expression
Hypotheses latmle.b 𝐵 = ( Base ‘ 𝐾 )
latmle.l = ( le ‘ 𝐾 )
latmle.m = ( meet ‘ 𝐾 )
Assertion latleeqm1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ( 𝑋 𝑌 ) = 𝑋 ) )

Proof

Step Hyp Ref Expression
1 latmle.b 𝐵 = ( Base ‘ 𝐾 )
2 latmle.l = ( le ‘ 𝐾 )
3 latmle.m = ( meet ‘ 𝐾 )
4 1 2 latref ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → 𝑋 𝑋 )
5 4 3adant3 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → 𝑋 𝑋 )
6 5 biantrurd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ( 𝑋 𝑋𝑋 𝑌 ) ) )
7 simp1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → 𝐾 ∈ Lat )
8 simp2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → 𝑋𝐵 )
9 simp3 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → 𝑌𝐵 )
10 1 2 3 latlem12 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑋𝐵𝑌𝐵 ) ) → ( ( 𝑋 𝑋𝑋 𝑌 ) ↔ 𝑋 ( 𝑋 𝑌 ) ) )
11 7 8 8 9 10 syl13anc ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑋𝑋 𝑌 ) ↔ 𝑋 ( 𝑋 𝑌 ) ) )
12 6 11 bitrd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌𝑋 ( 𝑋 𝑌 ) ) )
13 1 2 3 latmle1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) 𝑋 )
14 13 biantrurd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( 𝑋 𝑌 ) ↔ ( ( 𝑋 𝑌 ) 𝑋𝑋 ( 𝑋 𝑌 ) ) ) )
15 12 14 bitrd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ( ( 𝑋 𝑌 ) 𝑋𝑋 ( 𝑋 𝑌 ) ) ) )
16 latpos ( 𝐾 ∈ Lat → 𝐾 ∈ Poset )
17 16 3ad2ant1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → 𝐾 ∈ Poset )
18 1 3 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
19 1 2 posasymb ( ( 𝐾 ∈ Poset ∧ ( 𝑋 𝑌 ) ∈ 𝐵𝑋𝐵 ) → ( ( ( 𝑋 𝑌 ) 𝑋𝑋 ( 𝑋 𝑌 ) ) ↔ ( 𝑋 𝑌 ) = 𝑋 ) )
20 17 18 8 19 syl3anc ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( ( 𝑋 𝑌 ) 𝑋𝑋 ( 𝑋 𝑌 ) ) ↔ ( 𝑋 𝑌 ) = 𝑋 ) )
21 15 20 bitrd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ( 𝑋 𝑌 ) = 𝑋 ) )