| Step | Hyp | Ref | Expression | 
						
							| 1 |  | posi.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | posi.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | simp1 | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐾  ∈  Poset ) | 
						
							| 4 |  | simp2 | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 5 |  | simp3 | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑌  ∈  𝐵 ) | 
						
							| 6 | 1 2 | posi | ⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋  ≤  𝑋  ∧  ( ( 𝑋  ≤  𝑌  ∧  𝑌  ≤  𝑋 )  →  𝑋  =  𝑌 )  ∧  ( ( 𝑋  ≤  𝑌  ∧  𝑌  ≤  𝑌 )  →  𝑋  ≤  𝑌 ) ) ) | 
						
							| 7 | 3 4 5 5 6 | syl13anc | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ≤  𝑋  ∧  ( ( 𝑋  ≤  𝑌  ∧  𝑌  ≤  𝑋 )  →  𝑋  =  𝑌 )  ∧  ( ( 𝑋  ≤  𝑌  ∧  𝑌  ≤  𝑌 )  →  𝑋  ≤  𝑌 ) ) ) | 
						
							| 8 | 7 | simp2d | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  ≤  𝑌  ∧  𝑌  ≤  𝑋 )  →  𝑋  =  𝑌 ) ) | 
						
							| 9 | 1 2 | posref | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵 )  →  𝑋  ≤  𝑋 ) | 
						
							| 10 |  | breq2 | ⊢ ( 𝑋  =  𝑌  →  ( 𝑋  ≤  𝑋  ↔  𝑋  ≤  𝑌 ) ) | 
						
							| 11 | 9 10 | syl5ibcom | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  =  𝑌  →  𝑋  ≤  𝑌 ) ) | 
						
							| 12 |  | breq1 | ⊢ ( 𝑋  =  𝑌  →  ( 𝑋  ≤  𝑋  ↔  𝑌  ≤  𝑋 ) ) | 
						
							| 13 | 9 12 | syl5ibcom | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  =  𝑌  →  𝑌  ≤  𝑋 ) ) | 
						
							| 14 | 11 13 | jcad | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  =  𝑌  →  ( 𝑋  ≤  𝑌  ∧  𝑌  ≤  𝑋 ) ) ) | 
						
							| 15 | 14 | 3adant3 | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  =  𝑌  →  ( 𝑋  ≤  𝑌  ∧  𝑌  ≤  𝑋 ) ) ) | 
						
							| 16 | 8 15 | impbid | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  ≤  𝑌  ∧  𝑌  ≤  𝑋 )  ↔  𝑋  =  𝑌 ) ) |