Metamath Proof Explorer


Theorem atn0

Description: An atom is not zero. ( atne0 analog.) (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses atne0.z 0 = ( 0. ‘ 𝐾 )
atne0.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion atn0 ( ( 𝐾 ∈ AtLat ∧ 𝑃𝐴 ) → 𝑃0 )

Proof

Step Hyp Ref Expression
1 atne0.z 0 = ( 0. ‘ 𝐾 )
2 atne0.a 𝐴 = ( Atoms ‘ 𝐾 )
3 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
4 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
5 3 4 1 2 isat3 ( 𝐾 ∈ AtLat → ( 𝑃𝐴 ↔ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃0 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑃 → ( 𝑥 = 𝑃𝑥 = 0 ) ) ) ) )
6 simp2 ( ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃0 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑃 → ( 𝑥 = 𝑃𝑥 = 0 ) ) ) → 𝑃0 )
7 5 6 syl6bi ( 𝐾 ∈ AtLat → ( 𝑃𝐴𝑃0 ) )
8 7 imp ( ( 𝐾 ∈ AtLat ∧ 𝑃𝐴 ) → 𝑃0 )