Step |
Hyp |
Ref |
Expression |
1 |
|
isat3.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
isat3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
isat3.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
4 |
|
isat3.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) |
6 |
1 3 5 4
|
isat |
⊢ ( 𝐾 ∈ AtLat → ( 𝑃 ∈ 𝐴 ↔ ( 𝑃 ∈ 𝐵 ∧ 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) ) ) |
7 |
|
simpl |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) → 𝐾 ∈ AtLat ) |
8 |
1 3
|
atl0cl |
⊢ ( 𝐾 ∈ AtLat → 0 ∈ 𝐵 ) |
9 |
8
|
adantr |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
10 |
|
simpr |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) → 𝑃 ∈ 𝐵 ) |
11 |
|
eqid |
⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) |
12 |
1 2 11 5
|
cvrval2 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → ( 0 ( ⋖ ‘ 𝐾 ) 𝑃 ↔ ( 0 ( lt ‘ 𝐾 ) 𝑃 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 0 ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ≤ 𝑃 ) → 𝑥 = 𝑃 ) ) ) ) |
13 |
7 9 10 12
|
syl3anc |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) → ( 0 ( ⋖ ‘ 𝐾 ) 𝑃 ↔ ( 0 ( lt ‘ 𝐾 ) 𝑃 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 0 ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ≤ 𝑃 ) → 𝑥 = 𝑃 ) ) ) ) |
14 |
1 11 3
|
atlltn0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) → ( 0 ( lt ‘ 𝐾 ) 𝑃 ↔ 𝑃 ≠ 0 ) ) |
15 |
1 11 3
|
atlltn0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑥 ∈ 𝐵 ) → ( 0 ( lt ‘ 𝐾 ) 𝑥 ↔ 𝑥 ≠ 0 ) ) |
16 |
15
|
adantlr |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 0 ( lt ‘ 𝐾 ) 𝑥 ↔ 𝑥 ≠ 0 ) ) |
17 |
16
|
imbi1d |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 0 ( lt ‘ 𝐾 ) 𝑥 → 𝑥 = 𝑃 ) ↔ ( 𝑥 ≠ 0 → 𝑥 = 𝑃 ) ) ) |
18 |
17
|
imbi2d |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑃 → ( 0 ( lt ‘ 𝐾 ) 𝑥 → 𝑥 = 𝑃 ) ) ↔ ( 𝑥 ≤ 𝑃 → ( 𝑥 ≠ 0 → 𝑥 = 𝑃 ) ) ) ) |
19 |
|
impexp |
⊢ ( ( ( 0 ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ≤ 𝑃 ) → 𝑥 = 𝑃 ) ↔ ( 0 ( lt ‘ 𝐾 ) 𝑥 → ( 𝑥 ≤ 𝑃 → 𝑥 = 𝑃 ) ) ) |
20 |
|
bi2.04 |
⊢ ( ( 0 ( lt ‘ 𝐾 ) 𝑥 → ( 𝑥 ≤ 𝑃 → 𝑥 = 𝑃 ) ) ↔ ( 𝑥 ≤ 𝑃 → ( 0 ( lt ‘ 𝐾 ) 𝑥 → 𝑥 = 𝑃 ) ) ) |
21 |
19 20
|
bitri |
⊢ ( ( ( 0 ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ≤ 𝑃 ) → 𝑥 = 𝑃 ) ↔ ( 𝑥 ≤ 𝑃 → ( 0 ( lt ‘ 𝐾 ) 𝑥 → 𝑥 = 𝑃 ) ) ) |
22 |
|
orcom |
⊢ ( ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ↔ ( 𝑥 = 0 ∨ 𝑥 = 𝑃 ) ) |
23 |
|
neor |
⊢ ( ( 𝑥 = 0 ∨ 𝑥 = 𝑃 ) ↔ ( 𝑥 ≠ 0 → 𝑥 = 𝑃 ) ) |
24 |
22 23
|
bitri |
⊢ ( ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ↔ ( 𝑥 ≠ 0 → 𝑥 = 𝑃 ) ) |
25 |
24
|
imbi2i |
⊢ ( ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ↔ ( 𝑥 ≤ 𝑃 → ( 𝑥 ≠ 0 → 𝑥 = 𝑃 ) ) ) |
26 |
18 21 25
|
3bitr4g |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 0 ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ≤ 𝑃 ) → 𝑥 = 𝑃 ) ↔ ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ) |
27 |
26
|
ralbidva |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( ( 0 ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ≤ 𝑃 ) → 𝑥 = 𝑃 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ) |
28 |
14 27
|
anbi12d |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) → ( ( 0 ( lt ‘ 𝐾 ) 𝑃 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 0 ( lt ‘ 𝐾 ) 𝑥 ∧ 𝑥 ≤ 𝑃 ) → 𝑥 = 𝑃 ) ) ↔ ( 𝑃 ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ) ) |
29 |
13 28
|
bitr2d |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵 ) → ( ( 𝑃 ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ↔ 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) ) |
30 |
29
|
pm5.32da |
⊢ ( 𝐾 ∈ AtLat → ( ( 𝑃 ∈ 𝐵 ∧ ( 𝑃 ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ) ↔ ( 𝑃 ∈ 𝐵 ∧ 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) ) ) |
31 |
6 30
|
bitr4d |
⊢ ( 𝐾 ∈ AtLat → ( 𝑃 ∈ 𝐴 ↔ ( 𝑃 ∈ 𝐵 ∧ ( 𝑃 ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ) ) ) |
32 |
|
3anass |
⊢ ( ( 𝑃 ∈ 𝐵 ∧ 𝑃 ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ↔ ( 𝑃 ∈ 𝐵 ∧ ( 𝑃 ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ) ) |
33 |
31 32
|
bitr4di |
⊢ ( 𝐾 ∈ AtLat → ( 𝑃 ∈ 𝐴 ↔ ( 𝑃 ∈ 𝐵 ∧ 𝑃 ≠ 0 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ) ) |