Metamath Proof Explorer


Theorem cvrval2

Description: Binary relation expressing Y covers X . Definition of covers in Kalmbach p. 15. ( cvbr2 analog.) (Contributed by NM, 16-Nov-2011)

Ref Expression
Hypotheses cvrletr.b 𝐵 = ( Base ‘ 𝐾 )
cvrletr.l = ( le ‘ 𝐾 )
cvrletr.s < = ( lt ‘ 𝐾 )
cvrletr.c 𝐶 = ( ⋖ ‘ 𝐾 )
Assertion cvrval2 ( ( 𝐾𝐴𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ∀ 𝑧𝐵 ( ( 𝑋 < 𝑧𝑧 𝑌 ) → 𝑧 = 𝑌 ) ) ) )

Proof

Step Hyp Ref Expression
1 cvrletr.b 𝐵 = ( Base ‘ 𝐾 )
2 cvrletr.l = ( le ‘ 𝐾 )
3 cvrletr.s < = ( lt ‘ 𝐾 )
4 cvrletr.c 𝐶 = ( ⋖ ‘ 𝐾 )
5 1 3 4 cvrval ( ( 𝐾𝐴𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧𝐵 ( 𝑋 < 𝑧𝑧 < 𝑌 ) ) ) )
6 iman ( ( ( 𝑋 < 𝑧𝑧 𝑌 ) → 𝑧 = 𝑌 ) ↔ ¬ ( ( 𝑋 < 𝑧𝑧 𝑌 ) ∧ ¬ 𝑧 = 𝑌 ) )
7 df-ne ( 𝑧𝑌 ↔ ¬ 𝑧 = 𝑌 )
8 7 anbi2i ( ( ( 𝑋 < 𝑧𝑧 𝑌 ) ∧ 𝑧𝑌 ) ↔ ( ( 𝑋 < 𝑧𝑧 𝑌 ) ∧ ¬ 𝑧 = 𝑌 ) )
9 6 8 xchbinxr ( ( ( 𝑋 < 𝑧𝑧 𝑌 ) → 𝑧 = 𝑌 ) ↔ ¬ ( ( 𝑋 < 𝑧𝑧 𝑌 ) ∧ 𝑧𝑌 ) )
10 anass ( ( ( 𝑋 < 𝑧𝑧 𝑌 ) ∧ 𝑧𝑌 ) ↔ ( 𝑋 < 𝑧 ∧ ( 𝑧 𝑌𝑧𝑌 ) ) )
11 2 3 pltval ( ( 𝐾𝐴𝑧𝐵𝑌𝐵 ) → ( 𝑧 < 𝑌 ↔ ( 𝑧 𝑌𝑧𝑌 ) ) )
12 11 3com23 ( ( 𝐾𝐴𝑌𝐵𝑧𝐵 ) → ( 𝑧 < 𝑌 ↔ ( 𝑧 𝑌𝑧𝑌 ) ) )
13 12 3expa ( ( ( 𝐾𝐴𝑌𝐵 ) ∧ 𝑧𝐵 ) → ( 𝑧 < 𝑌 ↔ ( 𝑧 𝑌𝑧𝑌 ) ) )
14 13 anbi2d ( ( ( 𝐾𝐴𝑌𝐵 ) ∧ 𝑧𝐵 ) → ( ( 𝑋 < 𝑧𝑧 < 𝑌 ) ↔ ( 𝑋 < 𝑧 ∧ ( 𝑧 𝑌𝑧𝑌 ) ) ) )
15 10 14 bitr4id ( ( ( 𝐾𝐴𝑌𝐵 ) ∧ 𝑧𝐵 ) → ( ( ( 𝑋 < 𝑧𝑧 𝑌 ) ∧ 𝑧𝑌 ) ↔ ( 𝑋 < 𝑧𝑧 < 𝑌 ) ) )
16 15 notbid ( ( ( 𝐾𝐴𝑌𝐵 ) ∧ 𝑧𝐵 ) → ( ¬ ( ( 𝑋 < 𝑧𝑧 𝑌 ) ∧ 𝑧𝑌 ) ↔ ¬ ( 𝑋 < 𝑧𝑧 < 𝑌 ) ) )
17 9 16 syl5bb ( ( ( 𝐾𝐴𝑌𝐵 ) ∧ 𝑧𝐵 ) → ( ( ( 𝑋 < 𝑧𝑧 𝑌 ) → 𝑧 = 𝑌 ) ↔ ¬ ( 𝑋 < 𝑧𝑧 < 𝑌 ) ) )
18 17 ralbidva ( ( 𝐾𝐴𝑌𝐵 ) → ( ∀ 𝑧𝐵 ( ( 𝑋 < 𝑧𝑧 𝑌 ) → 𝑧 = 𝑌 ) ↔ ∀ 𝑧𝐵 ¬ ( 𝑋 < 𝑧𝑧 < 𝑌 ) ) )
19 ralnex ( ∀ 𝑧𝐵 ¬ ( 𝑋 < 𝑧𝑧 < 𝑌 ) ↔ ¬ ∃ 𝑧𝐵 ( 𝑋 < 𝑧𝑧 < 𝑌 ) )
20 18 19 bitrdi ( ( 𝐾𝐴𝑌𝐵 ) → ( ∀ 𝑧𝐵 ( ( 𝑋 < 𝑧𝑧 𝑌 ) → 𝑧 = 𝑌 ) ↔ ¬ ∃ 𝑧𝐵 ( 𝑋 < 𝑧𝑧 < 𝑌 ) ) )
21 20 anbi2d ( ( 𝐾𝐴𝑌𝐵 ) → ( ( 𝑋 < 𝑌 ∧ ∀ 𝑧𝐵 ( ( 𝑋 < 𝑧𝑧 𝑌 ) → 𝑧 = 𝑌 ) ) ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧𝐵 ( 𝑋 < 𝑧𝑧 < 𝑌 ) ) ) )
22 21 3adant2 ( ( 𝐾𝐴𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 < 𝑌 ∧ ∀ 𝑧𝐵 ( ( 𝑋 < 𝑧𝑧 𝑌 ) → 𝑧 = 𝑌 ) ) ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧𝐵 ( 𝑋 < 𝑧𝑧 < 𝑌 ) ) ) )
23 5 22 bitr4d ( ( 𝐾𝐴𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ∀ 𝑧𝐵 ( ( 𝑋 < 𝑧𝑧 𝑌 ) → 𝑧 = 𝑌 ) ) ) )