Step |
Hyp |
Ref |
Expression |
1 |
|
cvrletr.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvrletr.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cvrletr.s |
⊢ < = ( lt ‘ 𝐾 ) |
4 |
|
cvrletr.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
5 |
1 3 4
|
cvrval |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) ) |
6 |
|
iman |
⊢ ( ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 = 𝑌 ) ↔ ¬ ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) ∧ ¬ 𝑧 = 𝑌 ) ) |
7 |
|
df-ne |
⊢ ( 𝑧 ≠ 𝑌 ↔ ¬ 𝑧 = 𝑌 ) |
8 |
7
|
anbi2i |
⊢ ( ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) ∧ 𝑧 ≠ 𝑌 ) ↔ ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) ∧ ¬ 𝑧 = 𝑌 ) ) |
9 |
6 8
|
xchbinxr |
⊢ ( ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 = 𝑌 ) ↔ ¬ ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) ∧ 𝑧 ≠ 𝑌 ) ) |
10 |
|
anass |
⊢ ( ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) ∧ 𝑧 ≠ 𝑌 ) ↔ ( 𝑋 < 𝑧 ∧ ( 𝑧 ≤ 𝑌 ∧ 𝑧 ≠ 𝑌 ) ) ) |
11 |
2 3
|
pltval |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑧 < 𝑌 ↔ ( 𝑧 ≤ 𝑌 ∧ 𝑧 ≠ 𝑌 ) ) ) |
12 |
11
|
3com23 |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 < 𝑌 ↔ ( 𝑧 ≤ 𝑌 ∧ 𝑧 ≠ 𝑌 ) ) ) |
13 |
12
|
3expa |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 < 𝑌 ↔ ( 𝑧 ≤ 𝑌 ∧ 𝑧 ≠ 𝑌 ) ) ) |
14 |
13
|
anbi2d |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ↔ ( 𝑋 < 𝑧 ∧ ( 𝑧 ≤ 𝑌 ∧ 𝑧 ≠ 𝑌 ) ) ) ) |
15 |
10 14
|
bitr4id |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) ∧ 𝑧 ≠ 𝑌 ) ↔ ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) |
16 |
15
|
notbid |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ¬ ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) ∧ 𝑧 ≠ 𝑌 ) ↔ ¬ ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) |
17 |
9 16
|
syl5bb |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 = 𝑌 ) ↔ ¬ ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) |
18 |
17
|
ralbidva |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 = 𝑌 ) ↔ ∀ 𝑧 ∈ 𝐵 ¬ ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) |
19 |
|
ralnex |
⊢ ( ∀ 𝑧 ∈ 𝐵 ¬ ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ↔ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) |
20 |
18 19
|
bitrdi |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 = 𝑌 ) ↔ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) |
21 |
20
|
anbi2d |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 < 𝑌 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 = 𝑌 ) ) ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) ) |
22 |
21
|
3adant2 |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 < 𝑌 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 = 𝑌 ) ) ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) ) |
23 |
5 22
|
bitr4d |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 = 𝑌 ) ) ) ) |