| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvrletr.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
cvrletr.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
cvrletr.s |
⊢ < = ( lt ‘ 𝐾 ) |
| 4 |
|
cvrletr.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
| 5 |
1 3 4
|
cvrnbtwn |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) |
| 6 |
5
|
3expia |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐶 𝑌 → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
| 7 |
|
iman |
⊢ ( ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) → 𝑍 = 𝑌 ) ↔ ¬ ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ¬ 𝑍 = 𝑌 ) ) |
| 8 |
|
anass |
⊢ ( ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ¬ 𝑍 = 𝑌 ) ↔ ( 𝑋 < 𝑍 ∧ ( 𝑍 ≤ 𝑌 ∧ ¬ 𝑍 = 𝑌 ) ) ) |
| 9 |
|
simpl |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ Poset ) |
| 10 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
| 11 |
|
simpr2 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
| 12 |
2 3
|
pltval |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑍 < 𝑌 ↔ ( 𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌 ) ) ) |
| 13 |
9 10 11 12
|
syl3anc |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑍 < 𝑌 ↔ ( 𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌 ) ) ) |
| 14 |
|
df-ne |
⊢ ( 𝑍 ≠ 𝑌 ↔ ¬ 𝑍 = 𝑌 ) |
| 15 |
14
|
anbi2i |
⊢ ( ( 𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌 ) ↔ ( 𝑍 ≤ 𝑌 ∧ ¬ 𝑍 = 𝑌 ) ) |
| 16 |
13 15
|
bitrdi |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑍 < 𝑌 ↔ ( 𝑍 ≤ 𝑌 ∧ ¬ 𝑍 = 𝑌 ) ) ) |
| 17 |
16
|
anbi2d |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ↔ ( 𝑋 < 𝑍 ∧ ( 𝑍 ≤ 𝑌 ∧ ¬ 𝑍 = 𝑌 ) ) ) ) |
| 18 |
8 17
|
bitr4id |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ¬ 𝑍 = 𝑌 ) ↔ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
| 19 |
18
|
notbid |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ¬ ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ¬ 𝑍 = 𝑌 ) ↔ ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
| 20 |
7 19
|
bitr2id |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ↔ ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) → 𝑍 = 𝑌 ) ) ) |
| 21 |
6 20
|
sylibd |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐶 𝑌 → ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) → 𝑍 = 𝑌 ) ) ) |
| 22 |
21
|
3impia |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) → 𝑍 = 𝑌 ) ) |
| 23 |
1 3 4
|
cvrlt |
⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 ) |
| 24 |
23
|
ex |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 → 𝑋 < 𝑌 ) ) |
| 25 |
24
|
3adant3r3 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐶 𝑌 → 𝑋 < 𝑌 ) ) |
| 26 |
25
|
3impia |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 ) |
| 27 |
|
breq2 |
⊢ ( 𝑍 = 𝑌 → ( 𝑋 < 𝑍 ↔ 𝑋 < 𝑌 ) ) |
| 28 |
26 27
|
syl5ibrcom |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑍 = 𝑌 → 𝑋 < 𝑍 ) ) |
| 29 |
1 2
|
posref |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ≤ 𝑌 ) |
| 30 |
29
|
3ad2antr2 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ≤ 𝑌 ) |
| 31 |
|
breq1 |
⊢ ( 𝑍 = 𝑌 → ( 𝑍 ≤ 𝑌 ↔ 𝑌 ≤ 𝑌 ) ) |
| 32 |
30 31
|
syl5ibrcom |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑍 = 𝑌 → 𝑍 ≤ 𝑌 ) ) |
| 33 |
32
|
3adant3 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑍 = 𝑌 → 𝑍 ≤ 𝑌 ) ) |
| 34 |
28 33
|
jcad |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑍 = 𝑌 → ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ) ) |
| 35 |
22 34
|
impbid |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ↔ 𝑍 = 𝑌 ) ) |