Metamath Proof Explorer


Theorem cvrnbtwn3

Description: The covers relation implies no in-betweenness. ( cvnbtwn3 analog.) (Contributed by NM, 4-Nov-2011)

Ref Expression
Hypotheses cvrletr.b 𝐵 = ( Base ‘ 𝐾 )
cvrletr.l = ( le ‘ 𝐾 )
cvrletr.s < = ( lt ‘ 𝐾 )
cvrletr.c 𝐶 = ( ⋖ ‘ 𝐾 )
Assertion cvrnbtwn3 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 𝑍𝑍 < 𝑌 ) ↔ 𝑋 = 𝑍 ) )

Proof

Step Hyp Ref Expression
1 cvrletr.b 𝐵 = ( Base ‘ 𝐾 )
2 cvrletr.l = ( le ‘ 𝐾 )
3 cvrletr.s < = ( lt ‘ 𝐾 )
4 cvrletr.c 𝐶 = ( ⋖ ‘ 𝐾 )
5 1 3 4 cvrnbtwn ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ¬ ( 𝑋 < 𝑍𝑍 < 𝑌 ) )
6 2 3 pltval ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑍𝐵 ) → ( 𝑋 < 𝑍 ↔ ( 𝑋 𝑍𝑋𝑍 ) ) )
7 6 3adant3r2 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 < 𝑍 ↔ ( 𝑋 𝑍𝑋𝑍 ) ) )
8 7 3adant3 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑋 < 𝑍 ↔ ( 𝑋 𝑍𝑋𝑍 ) ) )
9 8 anbi1d ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 < 𝑍𝑍 < 𝑌 ) ↔ ( ( 𝑋 𝑍𝑋𝑍 ) ∧ 𝑍 < 𝑌 ) ) )
10 9 notbid ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ¬ ( 𝑋 < 𝑍𝑍 < 𝑌 ) ↔ ¬ ( ( 𝑋 𝑍𝑋𝑍 ) ∧ 𝑍 < 𝑌 ) ) )
11 an32 ( ( ( 𝑋 𝑍𝑋𝑍 ) ∧ 𝑍 < 𝑌 ) ↔ ( ( 𝑋 𝑍𝑍 < 𝑌 ) ∧ 𝑋𝑍 ) )
12 df-ne ( 𝑋𝑍 ↔ ¬ 𝑋 = 𝑍 )
13 12 anbi2i ( ( ( 𝑋 𝑍𝑍 < 𝑌 ) ∧ 𝑋𝑍 ) ↔ ( ( 𝑋 𝑍𝑍 < 𝑌 ) ∧ ¬ 𝑋 = 𝑍 ) )
14 11 13 bitri ( ( ( 𝑋 𝑍𝑋𝑍 ) ∧ 𝑍 < 𝑌 ) ↔ ( ( 𝑋 𝑍𝑍 < 𝑌 ) ∧ ¬ 𝑋 = 𝑍 ) )
15 14 notbii ( ¬ ( ( 𝑋 𝑍𝑋𝑍 ) ∧ 𝑍 < 𝑌 ) ↔ ¬ ( ( 𝑋 𝑍𝑍 < 𝑌 ) ∧ ¬ 𝑋 = 𝑍 ) )
16 iman ( ( ( 𝑋 𝑍𝑍 < 𝑌 ) → 𝑋 = 𝑍 ) ↔ ¬ ( ( 𝑋 𝑍𝑍 < 𝑌 ) ∧ ¬ 𝑋 = 𝑍 ) )
17 15 16 bitr4i ( ¬ ( ( 𝑋 𝑍𝑋𝑍 ) ∧ 𝑍 < 𝑌 ) ↔ ( ( 𝑋 𝑍𝑍 < 𝑌 ) → 𝑋 = 𝑍 ) )
18 10 17 bitrdi ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ¬ ( 𝑋 < 𝑍𝑍 < 𝑌 ) ↔ ( ( 𝑋 𝑍𝑍 < 𝑌 ) → 𝑋 = 𝑍 ) ) )
19 5 18 mpbid ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 𝑍𝑍 < 𝑌 ) → 𝑋 = 𝑍 ) )
20 1 2 posref ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵 ) → 𝑋 𝑋 )
21 breq2 ( 𝑋 = 𝑍 → ( 𝑋 𝑋𝑋 𝑍 ) )
22 20 21 syl5ibcom ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵 ) → ( 𝑋 = 𝑍𝑋 𝑍 ) )
23 22 3ad2antr1 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 = 𝑍𝑋 𝑍 ) )
24 23 3adant3 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑋 = 𝑍𝑋 𝑍 ) )
25 simp1 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝐾 ∈ Poset )
26 simp21 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋𝐵 )
27 simp22 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑌𝐵 )
28 simp3 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 𝐶 𝑌 )
29 1 3 4 cvrlt ( ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 )
30 25 26 27 28 29 syl31anc ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 )
31 breq1 ( 𝑋 = 𝑍 → ( 𝑋 < 𝑌𝑍 < 𝑌 ) )
32 30 31 syl5ibcom ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑋 = 𝑍𝑍 < 𝑌 ) )
33 24 32 jcad ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑋 = 𝑍 → ( 𝑋 𝑍𝑍 < 𝑌 ) ) )
34 19 33 impbid ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 𝑍𝑍 < 𝑌 ) ↔ 𝑋 = 𝑍 ) )