Metamath Proof Explorer


Theorem cvrnbtwn

Description: There is no element between the two arguments of the covers relation. ( cvnbtwn analog.) (Contributed by NM, 18-Oct-2011)

Ref Expression
Hypotheses cvrfval.b 𝐵 = ( Base ‘ 𝐾 )
cvrfval.s < = ( lt ‘ 𝐾 )
cvrfval.c 𝐶 = ( ⋖ ‘ 𝐾 )
Assertion cvrnbtwn ( ( 𝐾𝐴 ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ¬ ( 𝑋 < 𝑍𝑍 < 𝑌 ) )

Proof

Step Hyp Ref Expression
1 cvrfval.b 𝐵 = ( Base ‘ 𝐾 )
2 cvrfval.s < = ( lt ‘ 𝐾 )
3 cvrfval.c 𝐶 = ( ⋖ ‘ 𝐾 )
4 1 2 3 cvrval ( ( 𝐾𝐴𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧𝐵 ( 𝑋 < 𝑧𝑧 < 𝑌 ) ) ) )
5 4 3adant3r3 ( ( 𝐾𝐴 ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧𝐵 ( 𝑋 < 𝑧𝑧 < 𝑌 ) ) ) )
6 ralnex ( ∀ 𝑧𝐵 ¬ ( 𝑋 < 𝑧𝑧 < 𝑌 ) ↔ ¬ ∃ 𝑧𝐵 ( 𝑋 < 𝑧𝑧 < 𝑌 ) )
7 breq2 ( 𝑧 = 𝑍 → ( 𝑋 < 𝑧𝑋 < 𝑍 ) )
8 breq1 ( 𝑧 = 𝑍 → ( 𝑧 < 𝑌𝑍 < 𝑌 ) )
9 7 8 anbi12d ( 𝑧 = 𝑍 → ( ( 𝑋 < 𝑧𝑧 < 𝑌 ) ↔ ( 𝑋 < 𝑍𝑍 < 𝑌 ) ) )
10 9 notbid ( 𝑧 = 𝑍 → ( ¬ ( 𝑋 < 𝑧𝑧 < 𝑌 ) ↔ ¬ ( 𝑋 < 𝑍𝑍 < 𝑌 ) ) )
11 10 rspcv ( 𝑍𝐵 → ( ∀ 𝑧𝐵 ¬ ( 𝑋 < 𝑧𝑧 < 𝑌 ) → ¬ ( 𝑋 < 𝑍𝑍 < 𝑌 ) ) )
12 6 11 syl5bir ( 𝑍𝐵 → ( ¬ ∃ 𝑧𝐵 ( 𝑋 < 𝑧𝑧 < 𝑌 ) → ¬ ( 𝑋 < 𝑍𝑍 < 𝑌 ) ) )
13 12 adantld ( 𝑍𝐵 → ( ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧𝐵 ( 𝑋 < 𝑧𝑧 < 𝑌 ) ) → ¬ ( 𝑋 < 𝑍𝑍 < 𝑌 ) ) )
14 13 3ad2ant3 ( ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) → ( ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧𝐵 ( 𝑋 < 𝑧𝑧 < 𝑌 ) ) → ¬ ( 𝑋 < 𝑍𝑍 < 𝑌 ) ) )
15 14 adantl ( ( 𝐾𝐴 ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧𝐵 ( 𝑋 < 𝑧𝑧 < 𝑌 ) ) → ¬ ( 𝑋 < 𝑍𝑍 < 𝑌 ) ) )
16 5 15 sylbid ( ( 𝐾𝐴 ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝐶 𝑌 → ¬ ( 𝑋 < 𝑍𝑍 < 𝑌 ) ) )
17 16 3impia ( ( 𝐾𝐴 ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ¬ ( 𝑋 < 𝑍𝑍 < 𝑌 ) )