| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ncvr1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
ncvr1.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
| 3 |
|
ncvr1.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
| 4 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 5 |
1 4 2
|
ople1 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) 1 ) |
| 6 |
|
opposet |
⊢ ( 𝐾 ∈ OP → 𝐾 ∈ Poset ) |
| 7 |
6
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 ( lt ‘ 𝐾 ) 𝑋 ) → 𝐾 ∈ Poset ) |
| 8 |
1 2
|
op1cl |
⊢ ( 𝐾 ∈ OP → 1 ∈ 𝐵 ) |
| 9 |
8
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 ( lt ‘ 𝐾 ) 𝑋 ) → 1 ∈ 𝐵 ) |
| 10 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 ( lt ‘ 𝐾 ) 𝑋 ) → 𝑋 ∈ 𝐵 ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 ( lt ‘ 𝐾 ) 𝑋 ) → 1 ( lt ‘ 𝐾 ) 𝑋 ) |
| 12 |
|
eqid |
⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) |
| 13 |
1 4 12
|
pltnle |
⊢ ( ( ( 𝐾 ∈ Poset ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 1 ( lt ‘ 𝐾 ) 𝑋 ) → ¬ 𝑋 ( le ‘ 𝐾 ) 1 ) |
| 14 |
7 9 10 11 13
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 ( lt ‘ 𝐾 ) 𝑋 ) → ¬ 𝑋 ( le ‘ 𝐾 ) 1 ) |
| 15 |
14
|
ex |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( 1 ( lt ‘ 𝐾 ) 𝑋 → ¬ 𝑋 ( le ‘ 𝐾 ) 1 ) ) |
| 16 |
5 15
|
mt2d |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ¬ 1 ( lt ‘ 𝐾 ) 𝑋 ) |
| 17 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 𝐶 𝑋 ) → 𝐾 ∈ OP ) |
| 18 |
8
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 𝐶 𝑋 ) → 1 ∈ 𝐵 ) |
| 19 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 𝐶 𝑋 ) → 𝑋 ∈ 𝐵 ) |
| 20 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 𝐶 𝑋 ) → 1 𝐶 𝑋 ) |
| 21 |
1 12 3
|
cvrlt |
⊢ ( ( ( 𝐾 ∈ OP ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 1 𝐶 𝑋 ) → 1 ( lt ‘ 𝐾 ) 𝑋 ) |
| 22 |
17 18 19 20 21
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 𝐶 𝑋 ) → 1 ( lt ‘ 𝐾 ) 𝑋 ) |
| 23 |
16 22
|
mtand |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ¬ 1 𝐶 𝑋 ) |