Metamath Proof Explorer


Theorem ople1

Description: Any element is less than the orthoposet unit. ( chss analog.) (Contributed by NM, 23-Oct-2011)

Ref Expression
Hypotheses ople1.b 𝐵 = ( Base ‘ 𝐾 )
ople1.l = ( le ‘ 𝐾 )
ople1.u 1 = ( 1. ‘ 𝐾 )
Assertion ople1 ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ) → 𝑋 1 )

Proof

Step Hyp Ref Expression
1 ople1.b 𝐵 = ( Base ‘ 𝐾 )
2 ople1.l = ( le ‘ 𝐾 )
3 ople1.u 1 = ( 1. ‘ 𝐾 )
4 eqid ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 )
5 simpl ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ) → 𝐾 ∈ OP )
6 simpr ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ) → 𝑋𝐵 )
7 eqid ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 )
8 1 4 7 op01dm ( 𝐾 ∈ OP → ( 𝐵 ∈ dom ( lub ‘ 𝐾 ) ∧ 𝐵 ∈ dom ( glb ‘ 𝐾 ) ) )
9 8 simpld ( 𝐾 ∈ OP → 𝐵 ∈ dom ( lub ‘ 𝐾 ) )
10 9 adantr ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ) → 𝐵 ∈ dom ( lub ‘ 𝐾 ) )
11 1 4 2 3 5 6 10 ple1 ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ) → 𝑋 1 )