Description: Any element is less than the orthoposet unit. ( chss analog.) (Contributed by NM, 23-Oct-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ople1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
ople1.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
ople1.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | ||
Assertion | ople1 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ople1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
2 | ople1.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
3 | ople1.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | |
4 | eqid | ⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) | |
5 | simpl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ OP ) | |
6 | simpr | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
7 | eqid | ⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) | |
8 | 1 4 7 | op01dm | ⊢ ( 𝐾 ∈ OP → ( 𝐵 ∈ dom ( lub ‘ 𝐾 ) ∧ 𝐵 ∈ dom ( glb ‘ 𝐾 ) ) ) |
9 | 8 | simpld | ⊢ ( 𝐾 ∈ OP → 𝐵 ∈ dom ( lub ‘ 𝐾 ) ) |
10 | 9 | adantr | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 𝐵 ∈ dom ( lub ‘ 𝐾 ) ) |
11 | 1 4 2 3 5 6 10 | ple1 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 1 ) |