Metamath Proof Explorer


Theorem mtand

Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009)

Ref Expression
Hypotheses mtand.1 ( 𝜑 → ¬ 𝜒 )
mtand.2 ( ( 𝜑𝜓 ) → 𝜒 )
Assertion mtand ( 𝜑 → ¬ 𝜓 )

Proof

Step Hyp Ref Expression
1 mtand.1 ( 𝜑 → ¬ 𝜒 )
2 mtand.2 ( ( 𝜑𝜓 ) → 𝜒 )
3 2 ex ( 𝜑 → ( 𝜓𝜒 ) )
4 1 3 mtod ( 𝜑 → ¬ 𝜓 )