Metamath Proof Explorer


Theorem ncvr1

Description: No element covers the lattice unity. (Contributed by NM, 8-Jul-2013)

Ref Expression
Hypotheses ncvr1.b B=BaseK
ncvr1.u 1˙=1.K
ncvr1.c C=K
Assertion ncvr1 KOPXB¬1˙CX

Proof

Step Hyp Ref Expression
1 ncvr1.b B=BaseK
2 ncvr1.u 1˙=1.K
3 ncvr1.c C=K
4 eqid K=K
5 1 4 2 ople1 KOPXBXK1˙
6 opposet KOPKPoset
7 6 ad2antrr KOPXB1˙<KXKPoset
8 1 2 op1cl KOP1˙B
9 8 ad2antrr KOPXB1˙<KX1˙B
10 simplr KOPXB1˙<KXXB
11 simpr KOPXB1˙<KX1˙<KX
12 eqid <K=<K
13 1 4 12 pltnle KPoset1˙BXB1˙<KX¬XK1˙
14 7 9 10 11 13 syl31anc KOPXB1˙<KX¬XK1˙
15 14 ex KOPXB1˙<KX¬XK1˙
16 5 15 mt2d KOPXB¬1˙<KX
17 simpll KOPXB1˙CXKOP
18 8 ad2antrr KOPXB1˙CX1˙B
19 simplr KOPXB1˙CXXB
20 simpr KOPXB1˙CX1˙CX
21 1 12 3 cvrlt KOP1˙BXB1˙CX1˙<KX
22 17 18 19 20 21 syl31anc KOPXB1˙CX1˙<KX
23 16 22 mtand KOPXB¬1˙CX