Metamath Proof Explorer


Theorem op1cl

Description: An orthoposet has a unity element. ( helch analog.) (Contributed by NM, 22-Oct-2011)

Ref Expression
Hypotheses op1cl.b B=BaseK
op1cl.u 1˙=1.K
Assertion op1cl KOP1˙B

Proof

Step Hyp Ref Expression
1 op1cl.b B=BaseK
2 op1cl.u 1˙=1.K
3 eqid lubK=lubK
4 1 3 2 p1val KOP1˙=lubKB
5 id KOPKOP
6 eqid glbK=glbK
7 1 3 6 op01dm KOPBdomlubKBdomglbK
8 7 simpld KOPBdomlubK
9 1 3 5 8 lubcl KOPlubKBB
10 4 9 eqeltrd KOP1˙B