Metamath Proof Explorer


Theorem op1cl

Description: An orthoposet has a unit element. ( helch analog.) (Contributed by NM, 22-Oct-2011)

Ref Expression
Hypotheses op1cl.b B = Base K
op1cl.u 1 ˙ = 1. K
Assertion op1cl K OP 1 ˙ B

Proof

Step Hyp Ref Expression
1 op1cl.b B = Base K
2 op1cl.u 1 ˙ = 1. K
3 eqid lub K = lub K
4 1 3 2 p1val K OP 1 ˙ = lub K B
5 id K OP K OP
6 eqid glb K = glb K
7 1 3 6 op01dm K OP B dom lub K B dom glb K
8 7 simpld K OP B dom lub K
9 1 3 5 8 lubcl K OP lub K B B
10 4 9 eqeltrd K OP 1 ˙ B