Metamath Proof Explorer


Theorem p1val

Description: Value of poset zero. (Contributed by NM, 22-Oct-2011)

Ref Expression
Hypotheses p1val.b B=BaseK
p1val.u U=lubK
p1val.t 1˙=1.K
Assertion p1val KV1˙=UB

Proof

Step Hyp Ref Expression
1 p1val.b B=BaseK
2 p1val.u U=lubK
3 p1val.t 1˙=1.K
4 elex KVKV
5 fveq2 k=Klubk=lubK
6 5 2 eqtr4di k=Klubk=U
7 fveq2 k=KBasek=BaseK
8 7 1 eqtr4di k=KBasek=B
9 6 8 fveq12d k=KlubkBasek=UB
10 df-p1 1.=kVlubkBasek
11 fvex UBV
12 9 10 11 fvmpt KV1.K=UB
13 3 12 eqtrid KV1˙=UB
14 4 13 syl KV1˙=UB