Description: Define the class of orthoposets, which are bounded posets with an orthocomplementation operation. Note that ( Base p ) e. dom ( lub p ) means there is an upper bound 1. , and similarly for the 0. element. (Contributed by NM, 20-Oct-2011) (Revised by NM, 13-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | df-oposet | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cops | |
|
1 | vp | |
|
2 | cpo | |
|
3 | cbs | |
|
4 | 1 | cv | |
5 | 4 3 | cfv | |
6 | club | |
|
7 | 4 6 | cfv | |
8 | 7 | cdm | |
9 | 5 8 | wcel | |
10 | cglb | |
|
11 | 4 10 | cfv | |
12 | 11 | cdm | |
13 | 5 12 | wcel | |
14 | 9 13 | wa | |
15 | vo | |
|
16 | 15 | cv | |
17 | coc | |
|
18 | 4 17 | cfv | |
19 | 16 18 | wceq | |
20 | va | |
|
21 | vb | |
|
22 | 20 | cv | |
23 | 22 16 | cfv | |
24 | 23 5 | wcel | |
25 | 23 16 | cfv | |
26 | 25 22 | wceq | |
27 | cple | |
|
28 | 4 27 | cfv | |
29 | 21 | cv | |
30 | 22 29 28 | wbr | |
31 | 29 16 | cfv | |
32 | 31 23 28 | wbr | |
33 | 30 32 | wi | |
34 | 24 26 33 | w3a | |
35 | cjn | |
|
36 | 4 35 | cfv | |
37 | 22 23 36 | co | |
38 | cp1 | |
|
39 | 4 38 | cfv | |
40 | 37 39 | wceq | |
41 | cmee | |
|
42 | 4 41 | cfv | |
43 | 22 23 42 | co | |
44 | cp0 | |
|
45 | 4 44 | cfv | |
46 | 43 45 | wceq | |
47 | 34 40 46 | w3a | |
48 | 47 21 5 | wral | |
49 | 48 20 5 | wral | |
50 | 19 49 | wa | |
51 | 50 15 | wex | |
52 | 14 51 | wa | |
53 | 52 1 2 | crab | |
54 | 0 53 | wceq | |