Metamath Proof Explorer


Theorem cvrletrN

Description: Property of an element above a covering. (Contributed by NM, 7-Dec-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cvrletr.b B=BaseK
cvrletr.l ˙=K
cvrletr.s <˙=<K
cvrletr.c C=K
Assertion cvrletrN KPosetXBYBZBXCYY˙ZX<˙Z

Proof

Step Hyp Ref Expression
1 cvrletr.b B=BaseK
2 cvrletr.l ˙=K
3 cvrletr.s <˙=<K
4 cvrletr.c C=K
5 simpll KPosetXBYBZBXCYKPoset
6 simplr1 KPosetXBYBZBXCYXB
7 simplr2 KPosetXBYBZBXCYYB
8 simpr KPosetXBYBZBXCYXCY
9 1 3 4 cvrlt KPosetXBYBXCYX<˙Y
10 5 6 7 8 9 syl31anc KPosetXBYBZBXCYX<˙Y
11 1 2 3 pltletr KPosetXBYBZBX<˙YY˙ZX<˙Z
12 11 adantr KPosetXBYBZBXCYX<˙YY˙ZX<˙Z
13 10 12 mpand KPosetXBYBZBXCYY˙ZX<˙Z
14 13 expimpd KPosetXBYBZBXCYY˙ZX<˙Z