Metamath Proof Explorer


Theorem pltletr

Description: Transitive law for chained "less than" and "less than or equal to". ( psssstr analog.) (Contributed by NM, 2-Dec-2011)

Ref Expression
Hypotheses pltletr.b B=BaseK
pltletr.l ˙=K
pltletr.s <˙=<K
Assertion pltletr KPosetXBYBZBX<˙YY˙ZX<˙Z

Proof

Step Hyp Ref Expression
1 pltletr.b B=BaseK
2 pltletr.l ˙=K
3 pltletr.s <˙=<K
4 1 2 3 pleval2 KPosetYBZBY˙ZY<˙ZY=Z
5 4 3adant3r1 KPosetXBYBZBY˙ZY<˙ZY=Z
6 5 adantr KPosetXBYBZBX<˙YY˙ZY<˙ZY=Z
7 1 3 plttr KPosetXBYBZBX<˙YY<˙ZX<˙Z
8 7 expdimp KPosetXBYBZBX<˙YY<˙ZX<˙Z
9 breq2 Y=ZX<˙YX<˙Z
10 9 biimpcd X<˙YY=ZX<˙Z
11 10 adantl KPosetXBYBZBX<˙YY=ZX<˙Z
12 8 11 jaod KPosetXBYBZBX<˙YY<˙ZY=ZX<˙Z
13 6 12 sylbid KPosetXBYBZBX<˙YY˙ZX<˙Z
14 13 expimpd KPosetXBYBZBX<˙YY˙ZX<˙Z