Metamath Proof Explorer


Theorem plelttr

Description: Transitive law for chained "less than or equal to" and "less than". ( sspsstr analog.) (Contributed by NM, 2-May-2012)

Ref Expression
Hypotheses pltletr.b B=BaseK
pltletr.l ˙=K
pltletr.s <˙=<K
Assertion plelttr KPosetXBYBZBX˙YY<˙ZX<˙Z

Proof

Step Hyp Ref Expression
1 pltletr.b B=BaseK
2 pltletr.l ˙=K
3 pltletr.s <˙=<K
4 1 2 3 pleval2 KPosetXBYBX˙YX<˙YX=Y
5 4 3adant3r3 KPosetXBYBZBX˙YX<˙YX=Y
6 1 3 plttr KPosetXBYBZBX<˙YY<˙ZX<˙Z
7 6 expd KPosetXBYBZBX<˙YY<˙ZX<˙Z
8 breq1 X=YX<˙ZY<˙Z
9 8 biimprd X=YY<˙ZX<˙Z
10 9 a1i KPosetXBYBZBX=YY<˙ZX<˙Z
11 7 10 jaod KPosetXBYBZBX<˙YX=YY<˙ZX<˙Z
12 5 11 sylbid KPosetXBYBZBX˙YY<˙ZX<˙Z
13 12 impd KPosetXBYBZBX˙YY<˙ZX<˙Z