Metamath Proof Explorer


Theorem plttr

Description: The less-than relation is transitive. ( psstr analog.) (Contributed by NM, 2-Dec-2011)

Ref Expression
Hypotheses pltnlt.b B=BaseK
pltnlt.s <˙=<K
Assertion plttr KPosetXBYBZBX<˙YY<˙ZX<˙Z

Proof

Step Hyp Ref Expression
1 pltnlt.b B=BaseK
2 pltnlt.s <˙=<K
3 eqid K=K
4 3 2 pltle KPosetXBYBX<˙YXKY
5 4 3adant3r3 KPosetXBYBZBX<˙YXKY
6 3 2 pltle KPosetYBZBY<˙ZYKZ
7 6 3adant3r1 KPosetXBYBZBY<˙ZYKZ
8 1 3 postr KPosetXBYBZBXKYYKZXKZ
9 5 7 8 syl2and KPosetXBYBZBX<˙YY<˙ZXKZ
10 1 2 pltn2lp KPosetXBYB¬X<˙YY<˙X
11 10 3adant3r3 KPosetXBYBZB¬X<˙YY<˙X
12 breq2 X=ZY<˙XY<˙Z
13 12 anbi2d X=ZX<˙YY<˙XX<˙YY<˙Z
14 13 notbid X=Z¬X<˙YY<˙X¬X<˙YY<˙Z
15 11 14 syl5ibcom KPosetXBYBZBX=Z¬X<˙YY<˙Z
16 15 necon2ad KPosetXBYBZBX<˙YY<˙ZXZ
17 9 16 jcad KPosetXBYBZBX<˙YY<˙ZXKZXZ
18 3 2 pltval KPosetXBZBX<˙ZXKZXZ
19 18 3adant3r2 KPosetXBYBZBX<˙ZXKZXZ
20 17 19 sylibrd KPosetXBYBZBX<˙YY<˙ZX<˙Z