Metamath Proof Explorer


Theorem psstr

Description: Transitive law for proper subclass. Theorem 9 of Suppes p. 23. (Contributed by NM, 7-Feb-1996)

Ref Expression
Assertion psstr A B B C A C

Proof

Step Hyp Ref Expression
1 pssss A B A B
2 pssss B C B C
3 1 2 sylan9ss A B B C A C
4 pssn2lp ¬ C B B C
5 psseq1 A = C A B C B
6 5 anbi1d A = C A B B C C B B C
7 4 6 mtbiri A = C ¬ A B B C
8 7 con2i A B B C ¬ A = C
9 dfpss2 A C A C ¬ A = C
10 3 8 9 sylanbrc A B B C A C