| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pltletr.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
pltletr.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
pltletr.s |
⊢ < = ( lt ‘ 𝐾 ) |
| 4 |
1 2 3
|
pleval2 |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ≤ 𝑍 ↔ ( 𝑌 < 𝑍 ∨ 𝑌 = 𝑍 ) ) ) |
| 5 |
4
|
3adant3r1 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 ≤ 𝑍 ↔ ( 𝑌 < 𝑍 ∨ 𝑌 = 𝑍 ) ) ) |
| 6 |
5
|
adantr |
⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 ≤ 𝑍 ↔ ( 𝑌 < 𝑍 ∨ 𝑌 = 𝑍 ) ) ) |
| 7 |
1 3
|
plttr |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑍 ) → 𝑋 < 𝑍 ) ) |
| 8 |
7
|
expdimp |
⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 < 𝑍 → 𝑋 < 𝑍 ) ) |
| 9 |
|
breq2 |
⊢ ( 𝑌 = 𝑍 → ( 𝑋 < 𝑌 ↔ 𝑋 < 𝑍 ) ) |
| 10 |
9
|
biimpcd |
⊢ ( 𝑋 < 𝑌 → ( 𝑌 = 𝑍 → 𝑋 < 𝑍 ) ) |
| 11 |
10
|
adantl |
⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 = 𝑍 → 𝑋 < 𝑍 ) ) |
| 12 |
8 11
|
jaod |
⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 < 𝑌 ) → ( ( 𝑌 < 𝑍 ∨ 𝑌 = 𝑍 ) → 𝑋 < 𝑍 ) ) |
| 13 |
6 12
|
sylbid |
⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 ≤ 𝑍 → 𝑋 < 𝑍 ) ) |
| 14 |
13
|
expimpd |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 < 𝑍 ) ) |