Metamath Proof Explorer


Theorem pltnle

Description: "Less than" implies not converse "less than or equal to". (Contributed by NM, 18-Oct-2011)

Ref Expression
Hypotheses pleval2.b B=BaseK
pleval2.l ˙=K
pleval2.s <˙=<K
Assertion pltnle KPosetXBYBX<˙Y¬Y˙X

Proof

Step Hyp Ref Expression
1 pleval2.b B=BaseK
2 pleval2.l ˙=K
3 pleval2.s <˙=<K
4 2 3 pltval KPosetXBYBX<˙YX˙YXY
5 1 2 posasymb KPosetXBYBX˙YY˙XX=Y
6 5 biimpd KPosetXBYBX˙YY˙XX=Y
7 6 expdimp KPosetXBYBX˙YY˙XX=Y
8 7 necon3ad KPosetXBYBX˙YXY¬Y˙X
9 8 expimpd KPosetXBYBX˙YXY¬Y˙X
10 4 9 sylbid KPosetXBYBX<˙Y¬Y˙X
11 10 imp KPosetXBYBX<˙Y¬Y˙X