Metamath Proof Explorer


Theorem cvrnbtwn3

Description: The covers relation implies no in-betweenness. ( cvnbtwn3 analog.) (Contributed by NM, 4-Nov-2011)

Ref Expression
Hypotheses cvrletr.b B=BaseK
cvrletr.l ˙=K
cvrletr.s <˙=<K
cvrletr.c C=K
Assertion cvrnbtwn3 KPosetXBYBZBXCYX˙ZZ<˙YX=Z

Proof

Step Hyp Ref Expression
1 cvrletr.b B=BaseK
2 cvrletr.l ˙=K
3 cvrletr.s <˙=<K
4 cvrletr.c C=K
5 1 3 4 cvrnbtwn KPosetXBYBZBXCY¬X<˙ZZ<˙Y
6 2 3 pltval KPosetXBZBX<˙ZX˙ZXZ
7 6 3adant3r2 KPosetXBYBZBX<˙ZX˙ZXZ
8 7 3adant3 KPosetXBYBZBXCYX<˙ZX˙ZXZ
9 8 anbi1d KPosetXBYBZBXCYX<˙ZZ<˙YX˙ZXZZ<˙Y
10 9 notbid KPosetXBYBZBXCY¬X<˙ZZ<˙Y¬X˙ZXZZ<˙Y
11 an32 X˙ZXZZ<˙YX˙ZZ<˙YXZ
12 df-ne XZ¬X=Z
13 12 anbi2i X˙ZZ<˙YXZX˙ZZ<˙Y¬X=Z
14 11 13 bitri X˙ZXZZ<˙YX˙ZZ<˙Y¬X=Z
15 14 notbii ¬X˙ZXZZ<˙Y¬X˙ZZ<˙Y¬X=Z
16 iman X˙ZZ<˙YX=Z¬X˙ZZ<˙Y¬X=Z
17 15 16 bitr4i ¬X˙ZXZZ<˙YX˙ZZ<˙YX=Z
18 10 17 bitrdi KPosetXBYBZBXCY¬X<˙ZZ<˙YX˙ZZ<˙YX=Z
19 5 18 mpbid KPosetXBYBZBXCYX˙ZZ<˙YX=Z
20 1 2 posref KPosetXBX˙X
21 breq2 X=ZX˙XX˙Z
22 20 21 syl5ibcom KPosetXBX=ZX˙Z
23 22 3ad2antr1 KPosetXBYBZBX=ZX˙Z
24 23 3adant3 KPosetXBYBZBXCYX=ZX˙Z
25 simp1 KPosetXBYBZBXCYKPoset
26 simp21 KPosetXBYBZBXCYXB
27 simp22 KPosetXBYBZBXCYYB
28 simp3 KPosetXBYBZBXCYXCY
29 1 3 4 cvrlt KPosetXBYBXCYX<˙Y
30 25 26 27 28 29 syl31anc KPosetXBYBZBXCYX<˙Y
31 breq1 X=ZX<˙YZ<˙Y
32 30 31 syl5ibcom KPosetXBYBZBXCYX=ZZ<˙Y
33 24 32 jcad KPosetXBYBZBXCYX=ZX˙ZZ<˙Y
34 19 33 impbid KPosetXBYBZBXCYX˙ZZ<˙YX=Z