Metamath Proof Explorer


Theorem posref

Description: A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Hypotheses posi.b B=BaseK
posi.l ˙=K
Assertion posref KPosetXBX˙X

Proof

Step Hyp Ref Expression
1 posi.b B=BaseK
2 posi.l ˙=K
3 posprs KPosetKProset
4 1 2 prsref KProsetXBX˙X
5 3 4 sylan KPosetXBX˙X