Metamath Proof Explorer


Definition df-proset

Description: Define the class of preordered sets, or prosets. A proset is a set equipped with a preorder, that is, a transitive and reflexive relation.

Preorders are a natural generalization of partial orders which need not be antisymmetric: there may be pairs of elements such that each is "less than or equal to" the other, so that both elements have the same order-theoretic properties (in some sense, there is a "tie" among them).

If a preorder is required to be antisymmetric, that is, there is no such "tie", then one obtains a partial order. If a preorder is required to be symmetric, that is, all comparable elements are tied, then one obtains an equivalence relation.

Every preorder naturally factors into these two notions: the "tie" relation on a proset is an equivalence relation, and the quotient under that equivalence relation is a partial order. (Contributed by FL, 17-Nov-2014) (Revised by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Assertion df-proset Proset=f|[˙Basef/b]˙[˙f/r]˙xbybzbxrxxryyrzxrz

Detailed syntax breakdown

Step Hyp Ref Expression
0 cproset classProset
1 vf setvarf
2 cbs classBase
3 1 cv setvarf
4 3 2 cfv classBasef
5 vb setvarb
6 cple classle
7 3 6 cfv classf
8 vr setvarr
9 vx setvarx
10 5 cv setvarb
11 vy setvary
12 vz setvarz
13 9 cv setvarx
14 8 cv setvarr
15 13 13 14 wbr wffxrx
16 11 cv setvary
17 13 16 14 wbr wffxry
18 12 cv setvarz
19 16 18 14 wbr wffyrz
20 17 19 wa wffxryyrz
21 13 18 14 wbr wffxrz
22 20 21 wi wffxryyrzxrz
23 15 22 wa wffxrxxryyrzxrz
24 23 12 10 wral wffzbxrxxryyrzxrz
25 24 11 10 wral wffybzbxrxxryyrzxrz
26 25 9 10 wral wffxbybzbxrxxryyrzxrz
27 26 8 7 wsbc wff[˙f/r]˙xbybzbxrxxryyrzxrz
28 27 5 4 wsbc wff[˙Basef/b]˙[˙f/r]˙xbybzbxrxxryyrzxrz
29 28 1 cab classf|[˙Basef/b]˙[˙f/r]˙xbybzbxrxxryyrzxrz
30 0 29 wceq wffProset=f|[˙Basef/b]˙[˙f/r]˙xbybzbxrxxryyrzxrz