Metamath Proof Explorer


Definition df-drs

Description: Define the class of directed sets. A directed set is a nonempty preordered set where every pair of elements have some upper bound. Note that it is not required that there exist aleast upper bound.

There is no consensus in the literature over whether directed sets are allowed to be empty. It is slightly more convenient for us if they are not. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion df-drs Dirset=fProset|[˙Basef/b]˙[˙f/r]˙bxbybzbxrzyrz

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdrs classDirset
1 vf setvarf
2 cproset classProset
3 cbs classBase
4 1 cv setvarf
5 4 3 cfv classBasef
6 vb setvarb
7 cple classle
8 4 7 cfv classf
9 vr setvarr
10 6 cv setvarb
11 c0 class
12 10 11 wne wffb
13 vx setvarx
14 vy setvary
15 vz setvarz
16 13 cv setvarx
17 9 cv setvarr
18 15 cv setvarz
19 16 18 17 wbr wffxrz
20 14 cv setvary
21 20 18 17 wbr wffyrz
22 19 21 wa wffxrzyrz
23 22 15 10 wrex wffzbxrzyrz
24 23 14 10 wral wffybzbxrzyrz
25 24 13 10 wral wffxbybzbxrzyrz
26 12 25 wa wffbxbybzbxrzyrz
27 26 9 8 wsbc wff[˙f/r]˙bxbybzbxrzyrz
28 27 6 5 wsbc wff[˙Basef/b]˙[˙f/r]˙bxbybzbxrzyrz
29 28 1 2 crab classfProset|[˙Basef/b]˙[˙f/r]˙bxbybzbxrzyrz
30 0 29 wceq wffDirset=fProset|[˙Basef/b]˙[˙f/r]˙bxbybzbxrzyrz