Metamath Proof Explorer


Theorem prsref

Description: "Less than or equal to" is reflexive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses isprs.b B=BaseK
isprs.l ˙=K
Assertion prsref KProsetXBX˙X

Proof

Step Hyp Ref Expression
1 isprs.b B=BaseK
2 isprs.l ˙=K
3 id XBXB
4 3 3 3 3jca XBXBXBXB
5 1 2 prslem KProsetXBXBXBX˙XX˙XX˙XX˙X
6 4 5 sylan2 KProsetXBX˙XX˙XX˙XX˙X
7 6 simpld KProsetXBX˙X