Metamath Proof Explorer


Theorem prslem

Description: Lemma for prsref and prstr . (Contributed by Mario Carneiro, 1-Feb-2015)

Ref Expression
Hypotheses isprs.b B=BaseK
isprs.l ˙=K
Assertion prslem KProsetXBYBZBX˙XX˙YY˙ZX˙Z

Proof

Step Hyp Ref Expression
1 isprs.b B=BaseK
2 isprs.l ˙=K
3 1 2 isprs KProsetKVxByBzBx˙xx˙yy˙zx˙z
4 3 simprbi KProsetxByBzBx˙xx˙yy˙zx˙z
5 breq12 x=Xx=Xx˙xX˙X
6 5 anidms x=Xx˙xX˙X
7 breq1 x=Xx˙yX˙y
8 7 anbi1d x=Xx˙yy˙zX˙yy˙z
9 breq1 x=Xx˙zX˙z
10 8 9 imbi12d x=Xx˙yy˙zx˙zX˙yy˙zX˙z
11 6 10 anbi12d x=Xx˙xx˙yy˙zx˙zX˙XX˙yy˙zX˙z
12 breq2 y=YX˙yX˙Y
13 breq1 y=Yy˙zY˙z
14 12 13 anbi12d y=YX˙yy˙zX˙YY˙z
15 14 imbi1d y=YX˙yy˙zX˙zX˙YY˙zX˙z
16 15 anbi2d y=YX˙XX˙yy˙zX˙zX˙XX˙YY˙zX˙z
17 breq2 z=ZY˙zY˙Z
18 17 anbi2d z=ZX˙YY˙zX˙YY˙Z
19 breq2 z=ZX˙zX˙Z
20 18 19 imbi12d z=ZX˙YY˙zX˙zX˙YY˙ZX˙Z
21 20 anbi2d z=ZX˙XX˙YY˙zX˙zX˙XX˙YY˙ZX˙Z
22 11 16 21 rspc3v XBYBZBxByBzBx˙xx˙yy˙zx˙zX˙XX˙YY˙ZX˙Z
23 4 22 mpan9 KProsetXBYBZBX˙XX˙YY˙ZX˙Z