Step |
Hyp |
Ref |
Expression |
1 |
|
isat3.b |
|- B = ( Base ` K ) |
2 |
|
isat3.l |
|- .<_ = ( le ` K ) |
3 |
|
isat3.z |
|- .0. = ( 0. ` K ) |
4 |
|
isat3.a |
|- A = ( Atoms ` K ) |
5 |
|
eqid |
|- ( |
6 |
1 3 5 4
|
isat |
|- ( K e. AtLat -> ( P e. A <-> ( P e. B /\ .0. ( |
7 |
|
simpl |
|- ( ( K e. AtLat /\ P e. B ) -> K e. AtLat ) |
8 |
1 3
|
atl0cl |
|- ( K e. AtLat -> .0. e. B ) |
9 |
8
|
adantr |
|- ( ( K e. AtLat /\ P e. B ) -> .0. e. B ) |
10 |
|
simpr |
|- ( ( K e. AtLat /\ P e. B ) -> P e. B ) |
11 |
|
eqid |
|- ( lt ` K ) = ( lt ` K ) |
12 |
1 2 11 5
|
cvrval2 |
|- ( ( K e. AtLat /\ .0. e. B /\ P e. B ) -> ( .0. ( ( .0. ( lt ` K ) P /\ A. x e. B ( ( .0. ( lt ` K ) x /\ x .<_ P ) -> x = P ) ) ) ) |
13 |
7 9 10 12
|
syl3anc |
|- ( ( K e. AtLat /\ P e. B ) -> ( .0. ( ( .0. ( lt ` K ) P /\ A. x e. B ( ( .0. ( lt ` K ) x /\ x .<_ P ) -> x = P ) ) ) ) |
14 |
1 11 3
|
atlltn0 |
|- ( ( K e. AtLat /\ P e. B ) -> ( .0. ( lt ` K ) P <-> P =/= .0. ) ) |
15 |
1 11 3
|
atlltn0 |
|- ( ( K e. AtLat /\ x e. B ) -> ( .0. ( lt ` K ) x <-> x =/= .0. ) ) |
16 |
15
|
adantlr |
|- ( ( ( K e. AtLat /\ P e. B ) /\ x e. B ) -> ( .0. ( lt ` K ) x <-> x =/= .0. ) ) |
17 |
16
|
imbi1d |
|- ( ( ( K e. AtLat /\ P e. B ) /\ x e. B ) -> ( ( .0. ( lt ` K ) x -> x = P ) <-> ( x =/= .0. -> x = P ) ) ) |
18 |
17
|
imbi2d |
|- ( ( ( K e. AtLat /\ P e. B ) /\ x e. B ) -> ( ( x .<_ P -> ( .0. ( lt ` K ) x -> x = P ) ) <-> ( x .<_ P -> ( x =/= .0. -> x = P ) ) ) ) |
19 |
|
impexp |
|- ( ( ( .0. ( lt ` K ) x /\ x .<_ P ) -> x = P ) <-> ( .0. ( lt ` K ) x -> ( x .<_ P -> x = P ) ) ) |
20 |
|
bi2.04 |
|- ( ( .0. ( lt ` K ) x -> ( x .<_ P -> x = P ) ) <-> ( x .<_ P -> ( .0. ( lt ` K ) x -> x = P ) ) ) |
21 |
19 20
|
bitri |
|- ( ( ( .0. ( lt ` K ) x /\ x .<_ P ) -> x = P ) <-> ( x .<_ P -> ( .0. ( lt ` K ) x -> x = P ) ) ) |
22 |
|
orcom |
|- ( ( x = P \/ x = .0. ) <-> ( x = .0. \/ x = P ) ) |
23 |
|
neor |
|- ( ( x = .0. \/ x = P ) <-> ( x =/= .0. -> x = P ) ) |
24 |
22 23
|
bitri |
|- ( ( x = P \/ x = .0. ) <-> ( x =/= .0. -> x = P ) ) |
25 |
24
|
imbi2i |
|- ( ( x .<_ P -> ( x = P \/ x = .0. ) ) <-> ( x .<_ P -> ( x =/= .0. -> x = P ) ) ) |
26 |
18 21 25
|
3bitr4g |
|- ( ( ( K e. AtLat /\ P e. B ) /\ x e. B ) -> ( ( ( .0. ( lt ` K ) x /\ x .<_ P ) -> x = P ) <-> ( x .<_ P -> ( x = P \/ x = .0. ) ) ) ) |
27 |
26
|
ralbidva |
|- ( ( K e. AtLat /\ P e. B ) -> ( A. x e. B ( ( .0. ( lt ` K ) x /\ x .<_ P ) -> x = P ) <-> A. x e. B ( x .<_ P -> ( x = P \/ x = .0. ) ) ) ) |
28 |
14 27
|
anbi12d |
|- ( ( K e. AtLat /\ P e. B ) -> ( ( .0. ( lt ` K ) P /\ A. x e. B ( ( .0. ( lt ` K ) x /\ x .<_ P ) -> x = P ) ) <-> ( P =/= .0. /\ A. x e. B ( x .<_ P -> ( x = P \/ x = .0. ) ) ) ) ) |
29 |
13 28
|
bitr2d |
|- ( ( K e. AtLat /\ P e. B ) -> ( ( P =/= .0. /\ A. x e. B ( x .<_ P -> ( x = P \/ x = .0. ) ) ) <-> .0. ( |
30 |
29
|
pm5.32da |
|- ( K e. AtLat -> ( ( P e. B /\ ( P =/= .0. /\ A. x e. B ( x .<_ P -> ( x = P \/ x = .0. ) ) ) ) <-> ( P e. B /\ .0. ( |
31 |
6 30
|
bitr4d |
|- ( K e. AtLat -> ( P e. A <-> ( P e. B /\ ( P =/= .0. /\ A. x e. B ( x .<_ P -> ( x = P \/ x = .0. ) ) ) ) ) ) |
32 |
|
3anass |
|- ( ( P e. B /\ P =/= .0. /\ A. x e. B ( x .<_ P -> ( x = P \/ x = .0. ) ) ) <-> ( P e. B /\ ( P =/= .0. /\ A. x e. B ( x .<_ P -> ( x = P \/ x = .0. ) ) ) ) ) |
33 |
31 32
|
bitr4di |
|- ( K e. AtLat -> ( P e. A <-> ( P e. B /\ P =/= .0. /\ A. x e. B ( x .<_ P -> ( x = P \/ x = .0. ) ) ) ) ) |