| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atne0.z |
|- .0. = ( 0. ` K ) |
| 2 |
|
atne0.a |
|- A = ( Atoms ` K ) |
| 3 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 4 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 5 |
3 4 1 2
|
isat3 |
|- ( K e. AtLat -> ( P e. A <-> ( P e. ( Base ` K ) /\ P =/= .0. /\ A. x e. ( Base ` K ) ( x ( le ` K ) P -> ( x = P \/ x = .0. ) ) ) ) ) |
| 6 |
|
simp2 |
|- ( ( P e. ( Base ` K ) /\ P =/= .0. /\ A. x e. ( Base ` K ) ( x ( le ` K ) P -> ( x = P \/ x = .0. ) ) ) -> P =/= .0. ) |
| 7 |
5 6
|
biimtrdi |
|- ( K e. AtLat -> ( P e. A -> P =/= .0. ) ) |
| 8 |
7
|
imp |
|- ( ( K e. AtLat /\ P e. A ) -> P =/= .0. ) |