Metamath Proof Explorer


Theorem iscvlat2N

Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses iscvlat2.b 𝐵 = ( Base ‘ 𝐾 )
iscvlat2.l = ( le ‘ 𝐾 )
iscvlat2.j = ( join ‘ 𝐾 )
iscvlat2.m = ( meet ‘ 𝐾 )
iscvlat2.z 0 = ( 0. ‘ 𝐾 )
iscvlat2.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion iscvlat2N ( 𝐾 ∈ CvLat ↔ ( 𝐾 ∈ AtLat ∧ ∀ 𝑝𝐴𝑞𝐴𝑥𝐵 ( ( ( 𝑝 𝑥 ) = 0𝑝 ( 𝑥 𝑞 ) ) → 𝑞 ( 𝑥 𝑝 ) ) ) )

Proof

Step Hyp Ref Expression
1 iscvlat2.b 𝐵 = ( Base ‘ 𝐾 )
2 iscvlat2.l = ( le ‘ 𝐾 )
3 iscvlat2.j = ( join ‘ 𝐾 )
4 iscvlat2.m = ( meet ‘ 𝐾 )
5 iscvlat2.z 0 = ( 0. ‘ 𝐾 )
6 iscvlat2.a 𝐴 = ( Atoms ‘ 𝐾 )
7 1 2 3 6 iscvlat ( 𝐾 ∈ CvLat ↔ ( 𝐾 ∈ AtLat ∧ ∀ 𝑝𝐴𝑞𝐴𝑥𝐵 ( ( ¬ 𝑝 𝑥𝑝 ( 𝑥 𝑞 ) ) → 𝑞 ( 𝑥 𝑝 ) ) ) )
8 simpll ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ 𝑥𝐵 ) → 𝐾 ∈ AtLat )
9 simplrl ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ 𝑥𝐵 ) → 𝑝𝐴 )
10 simpr ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ 𝑥𝐵 ) → 𝑥𝐵 )
11 1 2 4 5 6 atnle ( ( 𝐾 ∈ AtLat ∧ 𝑝𝐴𝑥𝐵 ) → ( ¬ 𝑝 𝑥 ↔ ( 𝑝 𝑥 ) = 0 ) )
12 8 9 10 11 syl3anc ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ 𝑥𝐵 ) → ( ¬ 𝑝 𝑥 ↔ ( 𝑝 𝑥 ) = 0 ) )
13 12 anbi1d ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ 𝑥𝐵 ) → ( ( ¬ 𝑝 𝑥𝑝 ( 𝑥 𝑞 ) ) ↔ ( ( 𝑝 𝑥 ) = 0𝑝 ( 𝑥 𝑞 ) ) ) )
14 13 imbi1d ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ 𝑥𝐵 ) → ( ( ( ¬ 𝑝 𝑥𝑝 ( 𝑥 𝑞 ) ) → 𝑞 ( 𝑥 𝑝 ) ) ↔ ( ( ( 𝑝 𝑥 ) = 0𝑝 ( 𝑥 𝑞 ) ) → 𝑞 ( 𝑥 𝑝 ) ) ) )
15 14 ralbidva ( ( 𝐾 ∈ AtLat ∧ ( 𝑝𝐴𝑞𝐴 ) ) → ( ∀ 𝑥𝐵 ( ( ¬ 𝑝 𝑥𝑝 ( 𝑥 𝑞 ) ) → 𝑞 ( 𝑥 𝑝 ) ) ↔ ∀ 𝑥𝐵 ( ( ( 𝑝 𝑥 ) = 0𝑝 ( 𝑥 𝑞 ) ) → 𝑞 ( 𝑥 𝑝 ) ) ) )
16 15 2ralbidva ( 𝐾 ∈ AtLat → ( ∀ 𝑝𝐴𝑞𝐴𝑥𝐵 ( ( ¬ 𝑝 𝑥𝑝 ( 𝑥 𝑞 ) ) → 𝑞 ( 𝑥 𝑝 ) ) ↔ ∀ 𝑝𝐴𝑞𝐴𝑥𝐵 ( ( ( 𝑝 𝑥 ) = 0𝑝 ( 𝑥 𝑞 ) ) → 𝑞 ( 𝑥 𝑝 ) ) ) )
17 16 pm5.32i ( ( 𝐾 ∈ AtLat ∧ ∀ 𝑝𝐴𝑞𝐴𝑥𝐵 ( ( ¬ 𝑝 𝑥𝑝 ( 𝑥 𝑞 ) ) → 𝑞 ( 𝑥 𝑝 ) ) ) ↔ ( 𝐾 ∈ AtLat ∧ ∀ 𝑝𝐴𝑞𝐴𝑥𝐵 ( ( ( 𝑝 𝑥 ) = 0𝑝 ( 𝑥 𝑞 ) ) → 𝑞 ( 𝑥 𝑝 ) ) ) )
18 7 17 bitri ( 𝐾 ∈ CvLat ↔ ( 𝐾 ∈ AtLat ∧ ∀ 𝑝𝐴𝑞𝐴𝑥𝐵 ( ( ( 𝑝 𝑥 ) = 0𝑝 ( 𝑥 𝑞 ) ) → 𝑞 ( 𝑥 𝑝 ) ) ) )