Metamath Proof Explorer


Theorem simplrl

Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009)

Ref Expression
Assertion simplrl ( ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ∧ 𝜃 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝜓𝜒 ) → 𝜓 )
2 1 ad2antlr ( ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ∧ 𝜃 ) → 𝜓 )