Metamath Proof Explorer


Theorem simplrl

Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009)

Ref Expression
Assertion simplrl
|- ( ( ( ph /\ ( ps /\ ch ) ) /\ th ) -> ps )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( ps /\ ch ) -> ps )
2 1 ad2antlr
 |-  ( ( ( ph /\ ( ps /\ ch ) ) /\ th ) -> ps )