Metamath Proof Explorer


Theorem simplrr

Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009)

Ref Expression
Assertion simplrr
|- ( ( ( ph /\ ( ps /\ ch ) ) /\ th ) -> ch )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( ps /\ ch ) -> ch )
2 1 ad2antlr
 |-  ( ( ( ph /\ ( ps /\ ch ) ) /\ th ) -> ch )