Metamath Proof Explorer


Theorem latjidm

Description: Lattice join is idempotent. Analogue of unidm . (Contributed by NM, 8-Oct-2011)

Ref Expression
Hypotheses latjidm.b B = Base K
latjidm.j ˙ = join K
Assertion latjidm K Lat X B X ˙ X = X

Proof

Step Hyp Ref Expression
1 latjidm.b B = Base K
2 latjidm.j ˙ = join K
3 eqid K = K
4 simpl K Lat X B K Lat
5 1 2 latjcl K Lat X B X B X ˙ X B
6 5 3anidm23 K Lat X B X ˙ X B
7 simpr K Lat X B X B
8 1 3 latref K Lat X B X K X
9 1 3 2 latjle12 K Lat X B X B X B X K X X K X X ˙ X K X
10 4 7 7 7 9 syl13anc K Lat X B X K X X K X X ˙ X K X
11 8 8 10 mpbi2and K Lat X B X ˙ X K X
12 1 3 2 latlej1 K Lat X B X B X K X ˙ X
13 12 3anidm23 K Lat X B X K X ˙ X
14 1 3 4 6 7 11 13 latasymd K Lat X B X ˙ X = X