Database
BASIC ORDER THEORY
Lattices
Lattices
latjidm
Next ⟩
latmcom
Metamath Proof Explorer
Ascii
Unicode
Theorem
latjidm
Description:
Lattice join is idempotent. Analogue of
unidm
.
(Contributed by
NM
, 8-Oct-2011)
Ref
Expression
Hypotheses
latjidm.b
⊢
B
=
Base
K
latjidm.j
⊢
∨
˙
=
join
⁡
K
Assertion
latjidm
⊢
K
∈
Lat
∧
X
∈
B
→
X
∨
˙
X
=
X
Proof
Step
Hyp
Ref
Expression
1
latjidm.b
⊢
B
=
Base
K
2
latjidm.j
⊢
∨
˙
=
join
⁡
K
3
eqid
⊢
≤
K
=
≤
K
4
simpl
⊢
K
∈
Lat
∧
X
∈
B
→
K
∈
Lat
5
1
2
latjcl
⊢
K
∈
Lat
∧
X
∈
B
∧
X
∈
B
→
X
∨
˙
X
∈
B
6
5
3anidm23
⊢
K
∈
Lat
∧
X
∈
B
→
X
∨
˙
X
∈
B
7
simpr
⊢
K
∈
Lat
∧
X
∈
B
→
X
∈
B
8
1
3
latref
⊢
K
∈
Lat
∧
X
∈
B
→
X
≤
K
X
9
1
3
2
latjle12
⊢
K
∈
Lat
∧
X
∈
B
∧
X
∈
B
∧
X
∈
B
→
X
≤
K
X
∧
X
≤
K
X
↔
X
∨
˙
X
≤
K
X
10
4
7
7
7
9
syl13anc
⊢
K
∈
Lat
∧
X
∈
B
→
X
≤
K
X
∧
X
≤
K
X
↔
X
∨
˙
X
≤
K
X
11
8
8
10
mpbi2and
⊢
K
∈
Lat
∧
X
∈
B
→
X
∨
˙
X
≤
K
X
12
1
3
2
latlej1
⊢
K
∈
Lat
∧
X
∈
B
∧
X
∈
B
→
X
≤
K
X
∨
˙
X
13
12
3anidm23
⊢
K
∈
Lat
∧
X
∈
B
→
X
≤
K
X
∨
˙
X
14
1
3
4
6
7
11
13
latasymd
⊢
K
∈
Lat
∧
X
∈
B
→
X
∨
˙
X
=
X