Metamath Proof Explorer


Theorem latmcom

Description: The join of a lattice commutes. (Contributed by NM, 6-Nov-2011)

Ref Expression
Hypotheses latmcom.b B=BaseK
latmcom.m ˙=meetK
Assertion latmcom KLatXBYBX˙Y=Y˙X

Proof

Step Hyp Ref Expression
1 latmcom.b B=BaseK
2 latmcom.m ˙=meetK
3 opelxpi XBYBXYB×B
4 3 3adant1 KLatXBYBXYB×B
5 eqid joinK=joinK
6 1 5 2 islat KLatKPosetdomjoinK=B×Bdom˙=B×B
7 simprr KPosetdomjoinK=B×Bdom˙=B×Bdom˙=B×B
8 6 7 sylbi KLatdom˙=B×B
9 8 3ad2ant1 KLatXBYBdom˙=B×B
10 4 9 eleqtrrd KLatXBYBXYdom˙
11 opelxpi YBXBYXB×B
12 11 ancoms XBYBYXB×B
13 12 3adant1 KLatXBYBYXB×B
14 13 9 eleqtrrd KLatXBYBYXdom˙
15 10 14 jca KLatXBYBXYdom˙YXdom˙
16 latpos KLatKPoset
17 1 2 meetcom KPosetXBYBXYdom˙YXdom˙X˙Y=Y˙X
18 16 17 syl3anl1 KLatXBYBXYdom˙YXdom˙X˙Y=Y˙X
19 15 18 mpdan KLatXBYBX˙Y=Y˙X